In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors.

Drug Metab Dispos

Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan (K.T., Y.A.); Drug Metabolism and Pharmacokinetics Japan, Biopharmaceutical Assessment Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., Ibaraki, Japan (N.W.); Laboratory of Pharmaceutical Regulatory Science (M.K.) and Laboratory of Molecular Pharmacokinetics (K.M.), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; and Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, RIKEN, Yokohama, Japan (Y.S.)

Published: November 2014

We have previously established an in silico classification method ("CPathPred") to predict the major clearance pathways of drugs based on an empirical decision with only four physicochemical descriptors-charge, molecular weight, octanol-water distribution coefficient, and protein unbound fraction in plasma-using a rectangular method. In this study, we attempted to improve the prediction performance of the method by introducing a support vector machine (SVM) and increasing the number of descriptors. The data set consisted of 141 approved drugs whose major clearance pathways were classified into metabolism by CYP3A4, CYP2C9, or CYP2D6; organic anion transporting polypeptide-mediated hepatic uptake; or renal excretion. With the same four default descriptors as used in CPathPred, the SVM-based predictor (named "default descriptor SVM") resulted in higher prediction performance compared with a rectangular-based predictor judged by 10-fold cross-validation. Two SVM-based predictors were also established by adding some descriptors as follows: 1) 881 descriptors predicted in silico from the chemical structures of drugs in addition to 4 default descriptors ("885 descriptor SVM"); and 2) selected descriptors extracted by a feature selection based on a greedy algorithm with default descriptors ("feature selection SVM"). The prediction accuracies of the rectangular-based predictor, default descriptor SVM, 885 descriptor SVM, and feature selection SVM were 0.49, 0.60, 0.72, and 0.91, respectively, and the overall precision values for these four methods were 0.72, 0.77, 0.86, and 0.98, respectively. In conclusion, we successfully constructed SVM-based predictors with limited numbers of descriptors to classify the major clearance pathways of drugs in humans with high prediction performance.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.114.057893DOI Listing

Publication Analysis

Top Keywords

clearance pathways
16
major clearance
12
prediction performance
12
default descriptors
12
descriptors
9
support vector
8
pathways drugs
8
descriptor svm"
8
rectangular-based predictor
8
svm-based predictors
8

Similar Publications

Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production.

Int J Biol Macromol

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C.

View Article and Find Full Text PDF

Melanoma-derived versican reactivates tumor-associated macrophages by upregulating pyruvate carboxylase through TLR2-MyD88-RelB axis under normoxia.

Acta Biochim Biophys Sin (Shanghai)

January 2025

International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.

Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.

View Article and Find Full Text PDF

Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.

View Article and Find Full Text PDF

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!