Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.

Appl Environ Microbiol

Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany.

Published: October 2014

The application of whole cells as biocatalysts is often limited by the toxicity of organic solvents, which constitute interesting substrates/products or can be used as a second phase for in situ product removal and as tools to control multistep biocatalysis. Solvent-tolerant bacteria, especially Pseudomonas strains, are proposed as promising hosts to overcome such limitations due to their inherent solvent tolerance mechanisms. However, potential industrial applications suffer from tedious, unproductive adaptation processes, phenotypic variability, and instable solvent-tolerant phenotypes. In this study, genes described to be involved in solvent tolerance were identified in Pseudomonas taiwanensis VLB120, and adaptive solvent tolerance was proven by cultivation in the presence of 1% (vol/vol) toluene. Deletion of ttgV, coding for the specific transcriptional repressor of solvent efflux pump TtgGHI gene expression, led to constitutively solvent-tolerant mutants of P. taiwanensis VLB120 and VLB120ΔC. Interestingly, the increased amount of solvent efflux pumps enhanced not only growth in the presence of toluene and styrene but also the biocatalytic performance in terms of stereospecific styrene epoxidation, although proton-driven solvent efflux is expected to compete with the styrene monooxygenase for metabolic energy. Compared to that of the P. taiwanensis VLB120ΔC parent strain, the maximum specific epoxidation activity of P. taiwanensis VLB120ΔCΔttgV doubled to 67 U/g of cells (dry weight). This study shows that solvent tolerance mechanisms, e.g., the solvent efflux pump TtgGHI, not only allow for growth in the presence of organic compounds but can also be used as tools to improve redox biocatalysis involving organic solvents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178659PMC
http://dx.doi.org/10.1128/AEM.01940-14DOI Listing

Publication Analysis

Top Keywords

solvent tolerance
20
solvent efflux
16
taiwanensis vlb120
12
solvent
9
pseudomonas taiwanensis
8
styrene epoxidation
8
epoxidation activity
8
organic solvents
8
tolerance mechanisms
8
efflux pump
8

Similar Publications

Eutectogels are recently emerged as promising alternatives to hydrogels owing to their good environmental stability derived from deep eutectic solvents (DES). However, construction of competent eutectogels with both high conductivity and mechanical toughness is still difficult to achieve yet highly demanded. In this work, new LMNP-PEDOT-CMC-AA (LPCA) eutectogels are prepared using acrylic acid (AA) and carboxymethylcellulose sodium (CMC) as polymeric networks, liquid metal nanoparticle-poly(3,4-ethylenedioxythiophene) (LMNP-PEDOT) are added as multifunctional soft fillers.

View Article and Find Full Text PDF

The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.

View Article and Find Full Text PDF

Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii.

Sci Rep

January 2025

Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.

In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.

View Article and Find Full Text PDF

Background: To study the efficacy and safety of Polyethylene glycolated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) in the prevention of neutropenia during concurrent chemoradiotherapy for nasopharyngeal carcinoma (NPC).

Methods: This is a single-center, prospective, randomized controlled study conducted from June 1, 2021, to October 31, 2022 on patients diagnosed with locally advanced NPC. Participants were divided into an experimental group and a control group.

View Article and Find Full Text PDF

High-throughput Experimentation Enables the Development of a Nickel-catalyzed Cyanation Platform for (Hetero)aryl Halides.

Chemistry

January 2025

Boehringer Ingelheim RCV GmbH & Co KG: Boehringer Ingelheim RCV GmbH und Co KG, Chemical Development, GERMANY.

A novel screening platform for the nickel-catalyzed cyanation of (hetero)aryl halides relying on the use of air-stable Ni(COD)DQ at low loading is reported. Through high-throughput experimentation (HTE), various ligand and solvent combinations are systematically explored, allowing the fast identification of suitable conditions. This standardized workflow serves as an excellent starting point for selecting other competent nickel precatalysts and for further optimization of reluctant substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!