The Food and Drug Administration (FDA) performs regulatory science to provide science-based medical product regulatory decisions. This article describes the types of scientific research the FDA's Center for Devices and Radiological Health performs and highlights specific projects related to medical devices for emergency medicine. In addition, this article discusses how results from regulatory science are used by the FDA to support the regulatory process as well as how the results are communicated to the public. Regulatory science supports the FDA's mission to assure safe, effective, and high-quality medical products are available to patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.annemergmed.2014.07.008DOI Listing

Publication Analysis

Top Keywords

regulatory science
16
medical devices
8
devices emergency
8
food drug
8
drug administration
8
regulatory
5
advancing regulatory
4
science
4
science bring
4
bring novel
4

Similar Publications

Multiple Myeloma (MM) is the second most common malignancy of the hematopoietic system, accounting for approximately 10% of all hematological malignancies, and currently, there is no complete cure. Existing research indicates that exosomal long non-coding RNAs (lncRNAs) play a crucial regulatory role in the initiation and progression of tumors, involving various interactions such as lncRNA-miRNA, lncRNA-mRNA, and lncRNA-RNA binding proteins (RBP). Despite the significant clinical application potential of exosomal lncRNAs, research in this area still faces challenges due to their low abundance and technical limitations.

View Article and Find Full Text PDF

Single-Virus Microscopy of Biochemical Events in Viral Entry.

JACS Au

January 2025

Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.

Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.

View Article and Find Full Text PDF

Application of nanomaterials in precision treatment of lung cancer.

iScience

January 2025

Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.

Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies.

View Article and Find Full Text PDF

Fluorogenic Tetrazine Bioorthogonal Probes for Advanced Application in Bioimaging and Biomedicine.

Chem Biomed Imaging

January 2025

Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging and Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University. Chengdu 610041, Sichuan, China.

A variety of bioorthogonal chemical tools have been developed and widely used in the study of biological phenomena in situ. Tetrazine bioorthogonal chemistry exhibits ultrafast reaction kinetics, excellent biocompatibility, and precise optical regulatory capabilities. Fluorogenic tetrazine bioorthogonal probes have achieved particularly diverse applications in bioimaging and disease diagnosis and treatment.

View Article and Find Full Text PDF

Unravelling the impact of SARS-CoV-2 on hemostatic and complement systems: a systems immunology perspective.

Front Immunol

January 2025

School of Interdisciplinary Engineering and Sciences (SINES), Department of Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.

The hemostatic system prevents and stops bleeding, maintaining circulatory integrity after injury. It directly interacts with the complement system, which is key to innate immunity. In coronavirus disease 2019 (COVID-19), dysregulation of the hemostatic and complement systems has been associated with several complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!