Idiotype-specific Th cells support oligoclonal expansion of anti-dsDNA B cells in mice with lupus.

J Immunol

Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and

Published: September 2014

AI Article Synopsis

  • Systemic lupus erythematosus (SLE) features hyperactive B cells and unclear T helper cell (Th) specificity, with anti-dsDNA autoantibodies being a key characteristic.
  • In a study with mice displaying SLE-like symptoms, Th cells that recognize specific antibody identities (Id) were found to promote the growth of anti-dsDNA B cells.
  • The findings suggest that the partnership between Id-specific Th cells and B cells is crucial in the formation of autoantibodies in SLE, indicating potential avenues for targeted treatment.

Article Abstract

Systemic lupus erythematosus (SLE) is marked by a Th cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions and hypergammaglobulinemia. The specificity of Th cells in lupus remains unclear, but B cell Ids have been suggested. A hallmark is the presence of anti-dsDNA, mutated IgG autoantibodies with a preponderance of arginines in CDR3 of the Ig variable H chain (IgVH). B cells can present V region-derived Id peptides on their MHC class II molecules to Id-specific Th cells. We show that Id-specific Th cells support the proliferation of anti-dsDNA Id(+) B cells in mice suffering from systemic autoimmune disease with SLE-like features. Mice developed marked clonal expansions of B cells; half of the IgVH sequences were clonally related. Anti-dsDNA B cells made up 40% of B cells in end-stage disease. The B cells expressed mutated IgVH with multiple arginines in CDR3. Hence, Id-driven T cell-B cell collaboration supported the production of classical anti-dsDNA Abs, recapitulating the characteristics of such Abs in SLE. The results support the concept that Id-specific Th cells may trigger the development of SLE and suggest that manipulation of the Id-specific T cell repertoire could play a role in treatment.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1400640DOI Listing

Publication Analysis

Top Keywords

id-specific cells
12
cells
11
cells support
8
anti-dsdna cells
8
cells mice
8
arginines cdr3
8
anti-dsdna
5
idiotype-specific cells
4
support oligoclonal
4
oligoclonal expansion
4

Similar Publications

ADA Anti-Drug Antibodies; BCR B Cell Receptor; BId Idiotype-specific B Cell; BiTE Bispecific T cell Engager; BMC Bone Marrow Chimeric Mice; BSA Bovine Serum Albumin; CDR Complementary Determining Region; CEA Carcinoembryonic Antigen; CIT Cancer Immunotherapy; CitAbs Cancer Immunotherapy Antibodies; DC Dendritic Cell; ELISA Enzyme-Linked Immunosorbent Assay; FcRn Neonatal Fc Receptor; FcyR Fc gamma Receptor; GM-CSF Granulocyte-Macrophage Colony Stimulating Factor; gMFI Geometric Mean Fluorescence Intensity; H Heavy Chain; IC Immune Complex; Id Idiotype; IgA Immunoglobulin alpha; IgG1 Immunoglobulin gamma 1; IL-2 Interleukin 2; IL-2R Interleukin 2 Receptor; IL2v Interleukin 2 Variant; IVIG1 Intravenous Immunoglobulin 1; KLH Keyhole Limpet Hemocyanin; L Light Chain; MAPPs MHC-associated Peptide Proteomics; MHC Major Histocompatibility Complex; PBMC Peripheral Blood Mononuclear Cells; PBS Phosphate Buffered Saline; SHM Somatic Hypermutation; scFv Single-chain Variable Fragment; TCR T cell Receptor; TFc Fc-specific T cell; TId Id-specific T cell; UV Ultraviolet; V Variable.

View Article and Find Full Text PDF

Background: Cancer-associated neoantigens (neoAg) derived from tumor genomic sequencing and predictive algorithms for mutated peptides are a promising basis for therapeutic vaccines under investigation. Although these are generally designed to bind major histocompatibility complex class I and induce CD8 cytolytic T lymphocyte (CTL) activity, results from preclinical and clinical studies demonstrate that the majority of neoAg vaccines efficiently induce CD4 T helper (Th) responses but not CTL. Despite this, these vaccines have demonstrated clinical efficacy.

View Article and Find Full Text PDF

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding antimyeloma idiotype (Id)-keyhole limpet hemocyanin (KLH) vaccine to vaccine-specific costimulated T cells. In this randomized phase 2 trial, patients received either control (KLH only) or Id-KLH vaccine, autologous transplantation, vaccine-specific costimulated T cells expanded ex vivo, and 2 booster doses of assigned vaccine. In 36 patients (KLH, n = 20; Id-KLH, n = 16), no dose-limiting toxicity was seen.

View Article and Find Full Text PDF

Intellectual disability (ID) is a neurodevelopmental disorder defined by below-average intelligence (intelligence quotient of <70) accompanied by adaptive behavior deficits. Defects in the functions of neural stem cells during brain development are closely linked to the pathogenesis of ID. To understand the molecular etiology of ID, we examined neural stem cells from individuals with Duchenne muscular dystrophy (DMD), a genetic disorder in which approximately one-third of the patients exhibit ID.

View Article and Find Full Text PDF

The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4 T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id B cells and Id-specific T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!