This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2014.06.031 | DOI Listing |
Sci Rep
January 2025
Institute of High Pressure Physics, PAS, Warsaw, Poland.
This study addresses the issue of effective carrier injection to quantum wells in laser diode structures. The nitride light emitting structures used in this study were fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE). We developed three distinct sets of samples, with varying quantum barrier thickness, different QWs indium composition and different position relative to the p- and n-sides of the structure.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China; Water Resources Department, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, 100038, China.
The Yellow River Basin (YRB) has emerged as a focal point of global vegetation greening due to climate change and human activities. Given its ecological vulnerability and intense human activities, environmental sustainability has become an urgent concern for scholars. Current research on the hydrological effects of vegetation greening, from a reductionist perspective, still struggle to answer the crucial question that whether vegetation water stress is increasing or decreasing.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of BioEconomy, National Research Council (CNR), Florence, Italy.
Background: Climate change is a fundamental threat to human health and outdoor workers are one of the most vulnerable population subgroups. Increasing heat stress and heatwaves are directly associated with the health and safety of workers for a large spectrum of occupations. Heat stress negatively affects labour supply, productivity, and workability.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
Ionic liquids (ILs) are widely used "green solvent" as they have a low vapor pressure and can replace volatile solvents in industry. However, ILs are difficult to biodegrade and are potentially harmful to the environment. This study, herein, investigated the toxicity of three imidazole ILs ([CMIM]Cl, [CMIM]Br, and [CDMIM]Br) towards soil microorganisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!