A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous sample drop flow-based microextraction method as a microextraction technique for determination of organic compounds in water sample. | LitMetric

Continuous sample drop flow-based microextraction (CSDF-ME) is an improved version of continuous-flow microextraction (CFME) and a novel technique developed for extraction and preconcentration of benzene, toluene, ethyl benzene, m-xylene and o-xylene (BTEXs) from aqueous samples prior to gas chromatography-flame ionization detection (GC-FID). In this technique, a small amount (a few microliters) of organic solvent is transferred to the bottom of a conical bottom test tube and a few mL of aqueous solution is moved through the organic solvent at relatively slow flow rate. The aqueous solution transforms into fine droplets while passing through the organic solvent. After extraction, the enriched analyte in the extraction solvent is determined by GC-FID. The type of extraction solvent, its volume, needle diameter, and aqueous sample flow rate were investigated. The enrichment factor was 221-269 under optimum conditions and the recovery was 89-102%. The linear ranges and limits of detection for BTEXs were 2-500 and 1.4-3.1 µg L(-1), respectively. The relative standard deviations for 10 µg L(-1) of BTEXs in water were 1.8-6.2% (n=5). The advantages of CSDF-ME are its low cost, relatively short sample preparation time, low solvent consumption, high recovery, and high enrichment factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2014.05.058DOI Listing

Publication Analysis

Top Keywords

organic solvent
12
continuous sample
8
sample drop
8
drop flow-based
8
flow-based microextraction
8
aqueous solution
8
flow rate
8
extraction solvent
8
enrichment factor
8
µg l-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!