The thermal, water and electrochemical stability of Cu-based metal organic frameworks (Cu-MOFs) confined in macroporous carbon (MPC) hybrids has been investigated. Thermogravimetric analyses, X-Ray diffraction, scanning electron microscopy, and cyclic voltammetry were employed to confirm the stability of pure Cu-MOFs, MPC, and Cu-MOFs-MPC. As compared to pure Cu-MOFs, the porous composite materials of MPC and Cu-MOFs interact and seem to form new materials having homogenous structure and chemistry, which show structural stability in aqueous media and electrochemical stability in phosphate buffer solution (PBS pH 7.4). The detection of ascorbic acid and hemoglobin is performed as an electrochemical probe, indicating Cu-MOFs-MPC holds great promise for the design of electrochemical sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2014.05.007 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.
View Article and Find Full Text PDFChemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:
J Colloid Interface Sci
January 2025
School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China. Electronic address:
Syngas has important industrial applications, and converting CO to CO is critical for syngas production. Metal-organic frameworks (MOFs) have demonstrated significant potential in photocatalytic syngas conversion, although the impact of catalytic reactions on tunable H/CO ratios remains unclear. Herein, we present a novel bimetallic NiCo-MOF catalyst, NiCo, exhibiting high catalytic activity in syngas conversion due to the CO product self-driven effect.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:
Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.
View Article and Find Full Text PDFFood Chem
January 2025
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China. Electronic address:
Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!