The purpose of the study was to analyze corticomuscular coherence during planning and execution of simple hand movements in individuals with cerebral palsy (CP) and healthy controls (HC). Fourteen individuals with CP and 15 HC performed voluntary paced movements (opening and closing the fist) in response to a warning signal. Simultaneous scalp EEG and surface EMG of extensor carpi radialis brevis were recorded during 15 isotonic contractions. Time-frequency corticomuscular coherence (EMG-C3/C4) before and during muscular contraction, as well as EMG intensity, onset latency and duration were analyzed. Although EMG intensity was similar in both groups, individuals with CP exhibited longer onset latency and increased duration of the muscular contraction than HC. CP also showed higher corticomuscular coherence in beta EEG band during both planning and execution of muscular contraction, as well as lower corticomuscular coherence in gamma EEG band at the beginning of the contraction as compared with HC. In conclusion, our results suggest that individuals with CP are characterized by an altered functional coupling between primary motor cortex and effector muscles during planning and execution of isotonic contractions. In addition, the usefulness of corticomuscular coherence as a research tool for exploring deficits in motor central processing in persons with early brain damage is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelekin.2014.07.004 | DOI Listing |
Neuroimage
January 2025
School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China. Electronic address:
The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs.
View Article and Find Full Text PDFStereotact Funct Neurosurg
November 2024
Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
Cogn Neurodyn
June 2024
Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China.
Studies show that movement observation (MO), movement imagery (MI), or movement execution (ME) based brain-computer interface systems are promising in promoting the rehabilitation and reorganization of damaged motor function. This study was aimed to explore and compare the motor function rehabilitation mechanism among MO, MI, and ME. 64-channel electroencephalogram and 4-channel electromyogram data were collected from 39 healthy participants (25 males, 14 females; 18-23 years old) during MO, ME, and MI.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
School of Health and Exercise Sciences and Centre for Heart, Lung and Vascular Health, The University of British Columbia, Kelowna, British Columbia, Canada.
The increasing descending drive needed to sustain submaximal isometric torque makes it difficult to isolate fatigue-related changes to neural excitability because evoked electromyography (EMG) responses are influenced by the relative activation of the motoneuron pool. Hence, it is becoming increasingly common to investigate fatigue using a sustained contraction with maintained output from the motoneuron pool; i.e.
View Article and Find Full Text PDFBiomed Signal Process Control
November 2024
University of Illinois Urbana-Champaign, Department of Bioengineering, Grainger College of Engineering, Urbana, Illinois, United States.
Following a stroke, compensation for the loss of ipsilesional corticospinal and corticobulbar projections, results in increased reliance on contralesional motor pathways during paretic arm movement. Better understanding outcomes of post-stroke contralesional cortical adaptation outcomes may benefit more targeted post-stroke motor rehabilitation interventions. This proof-of-concept study involves eight healthy controls and ten post-stroke participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!