Remodeling a broken system through hospital-payer partnerships.

Nurs Manage

Jennifer Volland is vice president of Program Development at National Research Corporation in Lincoln, Neb.

Published: September 2014

One way to fix our broken system is to strengthen hospital-payer partnerships, which will help shift caregiver focus from volume to value.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.NUMA.0000453269.57887.05DOI Listing

Publication Analysis

Top Keywords

broken system
8
hospital-payer partnerships
8
remodeling broken
4
system hospital-payer
4
partnerships broken
4
system strengthen
4
strengthen hospital-payer
4
partnerships will
4
will help
4
help shift
4

Similar Publications

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

The aim of this study was to compare the performance, egg quality and economic aspects of laying hybrids of different genotypes in free-range system. In the study, three different laying genotypes (Lohmann Brown, Lohmann Sandy and ATAK-S genotype) were used. Each group consisted of four replicates and each replicate contained 20 hens.

View Article and Find Full Text PDF

Microcapsule-Containing Self-Reporting Materials Based on Donor-acceptor Stenhouse Adducts.

ACS Macro Lett

January 2025

Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China.

The microcapsule-containing self-reporting system has attracted attention for its excellent characteristics in visualizing microdamage. In this study, we developed self-reporting materials based on the formation of donor-acceptor Stenhouse adducts (DASA) from microcapsules containing Meldrum's acid furfural conjugate (MAFC). Under mechanical force, MAFC is released from broken microcapsules and forms highly colored DASA with secondary amines in the matrix to indicate the small cracks or deformations.

View Article and Find Full Text PDF

Raman signatures of inversion symmetry breaking structural transition in quasi-1D compound, (TaSe4)3I.

J Phys Condens Matter

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.

The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.

View Article and Find Full Text PDF

Infertility can harm a patient in physical, psychological, spiritual, and medical ways. This illness is unusual because it affects the patient's companion and the patient individually. Infertility is a multifactorial disease, and various etiological factors like infection are known to develop this disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!