We present a simple but robust nondestructive process for fabricating micropatterns of thin ferroelectric polymer films with controlled crystals. Our method is based on utilization of localized heat arising from thin Ge(8)Sb(2)Te(11) (GST) alloy layer upon exposure of 650 nm laser. The heat was generated on GST layer within a few hundred of nanosecond exposure and subsequently transferred to a thin poly(vinylidene fluoride-co-trifluoroethylene) film deposited on GST layer. By controlling exposure time and power of the scanned laser, ferroelectric patterns of one or two microns in size are fabricated with various shape. In the micropatterned regions, ferroelectric polymer crystals were efficiently controlled in both degree of the crystallinity and the molecular orientations. Nonvolatile memory devices with laser scanned ferroelectric polymer layers exhibited excellent device performance of large remnant polarization, ON/OFF current ratio and data retention. The results are comparable with devices containing ferroelectric films thermally annealed at least for 2 h, making our process extremely efficient for saving time. Furthermore, our approach can be conveniently combined with a number of other functional organic materials for the future electronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am503397jDOI Listing

Publication Analysis

Top Keywords

ferroelectric polymer
16
thin ferroelectric
8
controlled crystals
8
alloy layer
8
nonvolatile memory
8
gst layer
8
ferroelectric
6
laser-induced nondestructive
4
nondestructive patterning
4
thin
4

Similar Publications

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

Enhancing ionic conductivity and expanding the electrochemical window in polymer electrolytes via ferroelectric-metal-organic-frameworks to manipulate charge spatial distribution.

J Colloid Interface Sci

January 2025

National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:

Poly (ethylene oxide) (PEO)-based polymer electrolytes have promising applications in all-solid-state lithium metal batteries. However, their wide range of practical applications is severely limited by their relatively low room temperature lithium ion conductivity and narrow electrochemical window. In this paper, based on the ability of spontaneous polarization of ferroelectric materials to generate polarization field under applied electric field and the characteristics of Metal-Organic-Frameworks (MOFs) materials with regular adjustable pore structure, a Nano material combining ferroelectric materials and MOF (NUS-6(Hf)-MOF) was first proposed to be added to PEO polymer electrolyte as a filler.

View Article and Find Full Text PDF

We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.

View Article and Find Full Text PDF

Linear Dielectric Polymers with Ferroelectric-Like Crystals for High-Temperature Capacitive Energy Storage.

Adv Mater

January 2025

Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric-like crystals has been developed.

View Article and Find Full Text PDF

Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells.

Nat Commun

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, PR China.

The interfacial molecular dipole enhances the photovoltaic performance of perovskite solar cells (PSCs) by facilitating improved charge extraction. However, conventional self-assembled monolayers (SAMs) face challenges like inadequate interface coverage and weak dipole interactions. Herein, we develop a strategy using a self-assembled ferroelectric layer to modify the interfacial properties of PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!