Plasma, generated in liquid at atmospheric pressure by a nanosecond pulsed voltage, was used to fabricate hybrid structures from boron nitride nanotubes and gold nanoparticles in deionized water. The pH was greatly reduced, conductivity was significantly increased, and concentrations of reactive oxygen and nitrogen species in the water were increased by the plasma treatment. The treatment reduced the length of the nanotubes, giving more individual cuplike structures, and introduced functional groups onto the surface. Gold nanoparticles were successively assembled onto the functionalized surfaces. The reactive species from the liquid plasma along with the nanosecond pulsed electric field seem to play a role in the shortening and functionalization of the nanotubes and the assembly of gold nanoparticles. The potential for targeted drug delivery was tested in a preliminary investigation using doxorubicin-loaded plasma-treated nanotubes which were effective at killing ∼99% of prostate cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la502960h | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
Stimulant laxatives (especially bisacodyl and sodium picosulfate) are frequently found to be adulterated into slimming foods, causing health-threatening effects to consumers. Sensitive, accurate, easy-to-operate and portable multiplex analytical techniques are still desired for the rapid screening of stimulant laxatives in slimming foods. In this work, a highly sensitive dual-modal colorimetric/photothermal lateral flow immunochromatographic assay (LFIA) was established based on facilely prepared concentrated gold nanoparticles (cAuNPs).
View Article and Find Full Text PDFMikrochim Acta
December 2024
College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.
Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.
View Article and Find Full Text PDFJ Mol Model
December 2024
Department of Studies in Physics, University of Mysore, Mysuru, 560006, India.
Context: In the context of biomaterials, triethylene glycol dimethacrylate (TEGDMA) is a widely used monomer in dental resins due to its favorable mechanical properties and ease of polymerization. However, improving its structural stability and enhancing its performance in biological applications remain crucial goals. This study examines the impact of incorporating gold (Au) nanoparticles into the TEGDMA matrix, focusing on their potential to improve mechanical, thermal, and optical properties for biomedical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada.
Gold nanoparticles (GNPs) encapsulated in amphiphilic block copolymers are a promising system for numerous biomedical applications, although critical information on the effects of various preparation variables on the structure and properties of this unique type of nanomaterial is currently missing from the literature. In this research, we synthesized GNPs functionalized with thiol-terminated polycaprolactone (PCL-GNPs) before encapsulating them into poly(ε-caprolactone)--poly(ethylene glycol) (PCL--PEG) micellar nanoparticles via nanoprecipitation to yield GNP-loaded polymeric nanoparticles (GNP-PNPs). We explored the role of different manufacturing variables (water volume, PCL--PEG to PCL-GNP ratio, and PEG block length) on the sizes, morphologies, GNP occupancies, colloidal gold concentrations, and time stability of GNP-PNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!