A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. | LitMetric

Objective: The objective of this study was to prepare and investigate better and stable amorphous ezetimibe nanosuspensions for oral bioavailability enhancement.

Materials And Methods: Nanosuspensions of ezetimibe were prepared by solvent-antisolvent precipitation technique using the surfactant, Tween 80 as stabilizer. The nanosuspension preparation was optimized for particle size by investigating two factors that is, solvent:antisolvent ratio and surfactant concentration, at three levels. The formulations were characterized for particle size, surface morphology, crystallinity, zeta potential, saturation solubility, in vitro drug release and in vivo drug absorption.

Results: The nanosuspensions of ezetimibe were successfully prepared using solvent-antisolvent precipitation. The two factors solvent:antisolvent ratio and surfactant concentration influenced the particle size of the nanosuspensions prepared. Nanosuspensions were smooth and spherical. The X-ray powdered diffraction and differential scanning calorimetry results indicated that the antisolvent-solvent method led to the amorphization of ezetimibe. Under storage, the amorphous ezetimibe nanosuspensions demonstrated significant physical stability. Ezetimibe nanosuspensions increased the saturation solubility to an extent of 4-times. Ezetimibe nanosuspensions completely dissolved in the dissolution medium within 1 h, while pure drug was dissolved up to 42% during same time. The Cmax with ezetimibe nanosuspension was approximately 3-fold higher when compared with that of ezetimibe conventional suspensions administered orally.

Conclusions: Stable amorphous ezetimibe nanosuspensions were successfully prepared and these nanosuspensions demonstrated dramatic improvement in oral bioavailability of the active.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131384PMC
http://dx.doi.org/10.4103/2230-973X.138344DOI Listing

Publication Analysis

Top Keywords

ezetimibe nanosuspensions
24
amorphous ezetimibe
16
oral bioavailability
12
particle size
12
ezetimibe
11
nanosuspensions
11
stable amorphous
8
nanosuspensions ezetimibe
8
ezetimibe prepared
8
prepared solvent-antisolvent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!