Background: In prior work, a phage engineered with a biofilm-degrading enzyme (dispersin B) cleared artificial, short-term biofilms more fully than the phage lacking the enzyme. An unresolved question is whether the transgene will be lost or maintained during phage growth - its loss would limit the utility of the engineering. Broadly supported evolutionary theory suggests that transgenes will be lost through a 'tragedy of the commons' mechanism unless the ecology of growth in biofilms meets specific requirements. We test that theory here.
Results: Functional properties of the transgenic phage were identified. Consistent with the previous study, the dispersin phage was superior to unmodified phage at clearing short term biofilms grown in broth, shown here to be an effect attributable to free enzyme. However, the dispersin phage was only marginally better than control phages on short term biofilms in minimal media and was no better than control phages in clearing long term biofilms. There was little empirical support for the tragedy of the commons framework despite a strong theoretical foundation for its supposed relevance. The framework requires that the transgene imposes an intrinsic cost, yet the transgene was intrinsically neutral or beneficial when expressed from one part of the phage genome. Expressed from a different part of the genome, the transgene did behave as if intrinsically costly, but its maintenance did not benefit from spatially structured growth per se - violating the tragedy framework.
Conclusions: Overall, the transgene was beneficial under many conditions, but no insight to its maintenance was attributable to the established evolutionary framework. The failure likely resides in system details that would be used to parameterize the models. Our study cautions against naive applications of evolutionary theory to synthetic biology, even qualitatively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128545 | PMC |
http://dx.doi.org/10.1186/1754-1611-8-21 | DOI Listing |
J Dent
December 2024
Dental College of Georgia, Augusta University, Augusta, GA, USA. Electronic address:
Objectives: To evaluate the efficacy of multi-functional root canal irrigating solutions in the removal of canal wall smear layers, antibacterial activity, cytotoxicity, and tissue dissolution efficacy.
Methods: Forty single-rooted teeth were mechanically instrumented and irrigated with Triton, EndoJuice™, EDTA, and 0.9% saline.
Membranes (Basel)
December 2024
School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Salerno, Italy.
This systematic review evaluated concomitant trends in microbial (total biofilm load and pre-dominant pathogens' counts) and clinical, radiographic, and crevicular variations following (any) peri-implantitis treatment in partially vs. totally edentulous, systemically healthy, non-smoking adults and compared them to peri-implant mucositis treated sites. The study protocol, compliant with the PRISMA statement, was registered on PROSPERO (CRD42024514521).
View Article and Find Full Text PDFProteins
December 2024
Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Staphylococcus aureus is a major cause of infections like bacteremia, pneumonia, and endocarditis. These infections are often linked to the ability of S. aureus to form biofilms.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
Stubborn biofilm infections pose serious threats to public health. Clinical practices highly rely on mechanical debridement and antibiotics, which often fail and lead to persistent and recurrent infections. The main culprits are 1) persistent bacteria reviving, colonizing, and rejuvenating biofilms, and 2) secondary pathogen exposure, particularly in individuals with chronic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!