Mathematical modelling of cerebral blood circulation and cerebral autoregulation: towards preventing intracranial hemorrhages in preterm newborns.

Comput Math Methods Med

Research Unit of Buhl-Strohmaier-Foundation for Children Orthopedics and Cerebral Palsy, Department of Orthopaedics, Clinic "Rechts der Isar", Technische Universität München, 81675 München, Germany.

Published: March 2015

Impaired cerebral autoregulation leads to fluctuations in cerebral blood flow, which can be especially dangerous for immature brain of preterm newborns. In this paper, two mathematical models of cerebral autoregulation are discussed. The first one is an enhancement of a vascular model proposed by Piechnik et al. We extend this model by adding a polynomial dependence of the vascular radius on the arterial blood pressure and adjusting the polynomial coefficients to experimental data to gain the autoregulation behavior. Moreover, the inclusion of a Preisach hysteresis operator, simulating a hysteretic dependence of the cerebral blood flow on the arterial pressure, is tested. The second model couples the blood vessel system model by Piechnik et al. with an ordinary differential equation model of cerebral autoregulation by Ursino and Lodi. An optimal control setting is proposed for a simplified variant of this coupled model. The objective of the control is the maintenance of the autoregulatory function for a wider range of the arterial pressure. The control can be interpreted as the effect of a medicament changing the cerebral blood flow by, for example, dilation of blood vessels. Advanced numerical methods developed by the authors are applied for the numerical treatment of the control problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122005PMC
http://dx.doi.org/10.1155/2014/965275DOI Listing

Publication Analysis

Top Keywords

cerebral blood
16
cerebral autoregulation
16
blood flow
12
cerebral
8
preterm newborns
8
arterial pressure
8
blood
7
model
6
autoregulation
5
mathematical modelling
4

Similar Publications

Alpha/beta values in pediatric medulloblastoma: implications for tailored approaches in radiation oncology.

Radiat Oncol

January 2025

Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.

Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.

View Article and Find Full Text PDF

Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.

View Article and Find Full Text PDF

Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.

View Article and Find Full Text PDF

The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon.

Cell Mol Biol Lett

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.

Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.

View Article and Find Full Text PDF

Increased plasma DOPA decarboxylase levels in Lewy body disorders are driven by dopaminergic treatment.

Nat Commun

January 2025

Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.

DOPA Decarboxylase (DDC) has been proposed as a cerebrospinal fluid (CSF) biomarker with increased concentrations in Lewy body disorders (LBDs) and highest levels in patients receiving dopaminergic treatment. Here we evaluate plasma DDC, measured by proximity extension assay, and the effect of dopaminergic treatment in three independent LBD (with a focus on dementia with Lewy bodies (DLB) and Parkinson's disease (PD)) cohorts: an autopsy-confirmed cohort (n = 71), a large multicenter, cross-dementia cohort (n = 1498) and a longitudinal cohort with detailed treatment information (n = 66, median follow-up time[IQR] = 4[4, 4] years). Plasma DDC was not altered between different LBDs and other disease groups or controls in absence of treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!