Use of quartz fiber post for reattachment of complex crown root fractures: A 4-year follow-up.

J Conserv Dent

Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Nagpur, Maharashtra, India.

Published: July 2014

Dental hard tissue trauma is among the most common cases encountered in dental practice. Simple tooth fractures, which occur due to sharp blows, are widely seen in all age groups, especially in young adults. If in case of complex fractures the fractured tooth fragments are available to the dentist in a clean and hydrated state, reattachment of the tooth fragment is the most conservative and biological treatment option possible. Cases of enamel and dentin fractures not involving pulp are treated by reattaching the fragment with adhesives and composite resin. However, fractures involving the pulp require reinforcement by quartz fiber posts and resin luting cement. In cases of fractures extending subgingivally, an envelope flap helps to achieve the desired isolation and visibility. This article presents 2 case reports of reattachment of fractured tooth fragments. The first case showing a 4-year success was treated without raising a flap. The second case with a subgingival fracture was treated by raising a flap. Reattachment is the most economical, biologically acceptable and esthetic restorative option for dental trauma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127703PMC
http://dx.doi.org/10.4103/0972-0707.136519DOI Listing

Publication Analysis

Top Keywords

quartz fiber
8
fractured tooth
8
tooth fragments
8
fractures involving
8
involving pulp
8
treated raising
8
raising flap
8
fractures
6
fiber post
4
reattachment
4

Similar Publications

In this paper, a highly sensitive methane (CH) sensor based on light-induced thermoelastic spectroscopy (LITES) and a T-shaped quartz tuning fork (QTF) with hydrogen (H) and helium (He) enhancement techniques are reported for the first time. The low resonant frequency self-designed T-shaped QTF was exploited for improving the energy accumulation time. H and He were utilized as surrounding gases for the T-shaped QTF to minimize energy loss, thereby enhancing the sensitivity of the LITES sensor.

View Article and Find Full Text PDF

We present an all-fiber-based laser gas analyzer (LGA) employing quartz-enhanced photoacoustic spectroscopy (QEPAS) and a side-polished fiber (SPF). The LGA comprises a custom quartz tuning fork (QTF) with 0.8 mm prong spacing, two acoustic micro-resonators (mR) located on either side of the prong spacing, and a single-mode fiber containing a 17 mm polished section passing through both mRs and QTF.

View Article and Find Full Text PDF

Short- and long-term pathologic responses to quartz are induced by nearly free silanols formed during crystal fracturing.

Part Fibre Toxicol

December 2024

Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.

Article Synopsis
  • - The inhalation of respirable crystalline silica, particularly quartz, is linked to serious health issues like lung inflammation, fibrosis, cancer, and autoimmune diseases, with nearly free silanols (NFS) from fractured quartz being key players in this toxicity.
  • - Experiments on mice showed that exposure to NFS-rich quartz caused significant acute and long-term inflammatory responses, fibrosis, cancer, and autoimmune signs, while NFS-poor quartz showed no such effects.
  • - The study highlights that NFS-rich quartz specifically triggers harmful biological responses, including increased pro-inflammatory cytokines, lung fibrosis markers, tumors, and autoantibodies, underscoring its health risks compared to less reactive quartz forms.
View Article and Find Full Text PDF

Immobilization of peptides onto nanofiber dressings holds significant potential for chronic wound treatment. However, it is necessary to understand the adsorptive capacity of the produced substrates and the binding affinity of the peptides to determine the interface success. This study aims at exploring for the first time the influence of electrospun poly(vinyl alcohol)-based nanofibers on the adsorption of a cyclic peptide, Tiger 17, and of a linear peptide, Pexiganan, using quartz crystal microbalance with dissipation monitoring (QCM-D).

View Article and Find Full Text PDF

This study evaluates the mechanical properties of materials used in the post-endodontic restoration of root-treated teeth and examines their performance under stress to provide insights for material selection in clinical applications. Particular attention is given to zirconium oxide, which demonstrates promising characteristics due to its esthetic color and favorable material properties, positioning it as a potential material for future use in post-endodontic treatments. Three materials-prefabricated quartz fiber-reinforced composite, milled zirconium oxide, and additively manufactured cobalt-chromium-were evaluated using compressive-deflection tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!