Loss-of-function mutations affecting the cholesterol transporter ATP-binding cassette transporter subfamily A member 1 (ABCA1) impair cellular cholesterol efflux and are associated with reduced HDL-cholesterol (HDL-C) levels. ABCA1 may also be important in regulating β-cell cholesterol homeostasis and insulin secretion. We sought to determine whether loss-of-function ABCA1 mutations affect β-cell secretory capacity in humans by performing glucose-potentiated arginine tests in three subjects homozygous for ABCA1 mutations (age 25 ± 11 years), eight heterozygous subjects (28 ± 7 years), and eight normal control subjects pair-matched to the heterozygous carriers. To account for any effect of low HDL-C on insulin secretion, we studied nine subjects with isolated low HDL-C with no ABCA1 mutations (age 26 ± 6 years) and nine pair-matched control subjects. Homozygotes for ABCA1 mutations exhibited enhanced oral glucose tolerance and dramatically increased β-cell secretory capacity that was also greater in ABCA1 heterozygous subjects than in control subjects, with no differences in insulin sensitivity. Isolated low HDL-C subjects also demonstrated an increase in β-cell secretory capacity but in contrast to those with ABCA1 mutations, exhibited impaired insulin sensitivity, supporting β-cell compensation for increased insulin demand. These data indicate that loss-of-function mutations in ABCA1 in young adults may be associated with enhanced β-cell secretory capacity and normal insulin sensitivity and support the importance of cellular cholesterol homeostasis in regulating β-cell insulin secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274805 | PMC |
http://dx.doi.org/10.2337/db14-0436 | DOI Listing |
Poult Sci
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China. Electronic address:
As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFJ Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFJ Dent Res
January 2025
Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.
is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!