Functional kinomics identifies candidate therapeutic targets in head and neck cancer.

Clin Cancer Res

Department of Otolaryngology: Head and Neck Surgery, University of Washington Medical Center, Seattle, Washington. Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington. Surgery and Perioperative Care Service, VA Puget Sound Health Care System, Seattle, Washington.

Published: August 2014

AI Article Synopsis

  • The study focuses on finding new therapeutic targets for head and neck squamous cell carcinoma (HNSCC) that have mutations in the p53 gene, using RNAi kinome viability screens across various cell lines.
  • Researchers identified 38 kinase targets, with significant validation for the WEE1 kinase, demonstrating that inhibiting it with MK-1775 greatly affects cancer cell survival and apoptosis, especially in cells with p53 mutations.
  • The WEE1 kinase shows promise as a potential treatment target, as its inhibition enhances the effectiveness of cisplatin in a preclinical model, highlighting the benefits of using functional kinomics in cancer research.

Article Abstract

Purpose: To identify novel therapeutic drug targets for p53-mutant head and neck squamous cell carcinoma (HNSCC).

Experimental Design: RNAi kinome viability screens were performed on HNSCC cells, including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19(Arf). Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was used to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets using multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition using a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775.

Results: Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2-M cell-cycle checkpoint, SFK, PI3K, and FAK pathways. RNAi-mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53-mutant HNSCC xenograft model.

Conclusions: WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135446PMC
http://dx.doi.org/10.1158/1078-0432.CCR-13-2858DOI Listing

Publication Analysis

Top Keywords

functional kinomics
12
kinase targets
12
wee1 kinase
12
therapeutic targets
8
head neck
8
identify novel
8
novel therapeutic
8
therapeutic drug
8
squamous cell
8
cell carcinoma
8

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Probing the Protein Kinases' Cysteinome by Covalent Fragments.

Angew Chem Int Ed Engl

December 2024

Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany.

Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines.

View Article and Find Full Text PDF

Discovery of MDI-114215: A Potent and Selective LIMK Inhibitor To Treat Fragile X Syndrome.

J Med Chem

January 2025

Medicines Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.

LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS.

View Article and Find Full Text PDF
Article Synopsis
  • Protein kinases are crucial for plant growth and responses to stress, but research on these proteins in sunflowers is limited compared to other crops like soybean and cotton.
  • A comprehensive study identified 2,583 protein kinases in sunflowers, classifying them into 22 families and 121 subfamilies, with three specific subfamilies showing significant growth.
  • The research also analyzed how these kinases respond to different stresses, ultimately identifying 73 key protein kinases involved in essential signaling pathways, contributing valuable foundational data to the field.
View Article and Find Full Text PDF

HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!