Improving perfusion quantification in arterial spin labeling for delayed arrival times by using optimized acquisition schemes.

Z Med Phys

Fraunhofer MEVIS-Institute for Medical Image Computing, Bremen, Germany; Faculty of Physics and Electronics, University of Bremen, Germany; mediri GmbH, Heidelberg, Germany.

Published: September 2015

Objective: The improvement in Arterial Spin Labeling (ASL) perfusion quantification, especially for delayed bolus arrival times (BAT), with an acquisition redistribution scheme mitigating the T1 decay of the label in multi-TI ASL measurements is investigated. A multi inflow time (TI) 3D-GRASE sequence is presented which adapts the distribution of acquisitions accordingly, by keeping the scan time constant.

Material And Methods: The MR sequence increases the number of averages at long TIs and decreases their number at short TIs and thus compensating the T1 decay of the label. The improvement of perfusion quantification is evaluated in simulations as well as in-vivo in healthy volunteers and patients with prolonged BATs due to age or steno-occlusive disease.

Results: The improvement in perfusion quantification depends on BAT. At healthy BATs the differences are small, but become larger for longer BATs typically found in certain diseases. The relative error of perfusion is improved up to 30% at BATs>1500ms in comparison to the standard acquisition scheme.

Conclusion: This adapted acquisition scheme improves the perfusion measurement in comparison to standard multi-TI ASL implementations. It provides relevant benefit in clinical conditions that cause prolonged BATs and is therefore of high clinical relevance for neuroimaging of steno-occlusive diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zemedi.2014.07.003DOI Listing

Publication Analysis

Top Keywords

perfusion quantification
16
arterial spin
8
spin labeling
8
arrival times
8
decay label
8
multi-ti asl
8
improvement perfusion
8
prolonged bats
8
comparison standard
8
perfusion
5

Similar Publications

Purpose: To validate the quantification of the prominent middle limiting membrane (PMLM) sign, a marker of mild-to-moderate acute ischemic damage on optical coherence tomography (OCT), by measuring middle limiting membrane (MLM) reflectivity in patients with central retinal vein occlusion (CRVO) and to investigate the prognostic impact of this measure.

Methods: Spectral Domain (SD)-OCT B-scans of 30 patients with CRVO, either sole CRVO or combined central retinal artery and vein occlusion (CCRAVO), were analyzed retrospectively and graded as PMLM present or absent. Normalized MLM reflectivity was calculated as a ratio of the maximum reflectivity within a MLM target layer and the average reflectivity of the retinal pigment epithelium (RPE).

View Article and Find Full Text PDF

Background: Disturbances in calcium and phosphorus homeostasis resulting from chronic kidney disease (CKD) may lead to atherosclerotic changes in blood vessels, potentially altering bone marrow perfusion. Our study aimed to investigate vertebral bone marrow perfusion using dynamic contrast-enhanced (DCE) MRI with a pharmacokinetic model. We also measured possible changes in water and fat content and bony trabeculae using T2* quantification, MR spectroscopy (MRS), and microcomputed tomography (μCT).

View Article and Find Full Text PDF

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

4D flow cardiac magnetic resonance in pediatric congenital heart disease: Insights from over four years of clinical practice.

Clin Imaging

January 2025

Institute of Clinical sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept of Pediatric Radiology, The Queen Silvia Children's Hospital, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Background: Congenital heart diseases (CHDs) are common birth defects. This work presents over four years of clinical experience of 4D flow cardiovascular magnetic resonance (CMR), highlighting its value for pediatric CHD.

Methods: Children with various CHD diagnoses (n = 298) were examined on a 1.

View Article and Find Full Text PDF

Background: Infertility is a special reproductive health defect. For women, congenital uterine malformations, extensive adhesions in the uterine cavity, and hysterectomy are associated with infertility. Uterine transplantation is technically feasible, but its clinical application and development are limited by donor shortages and immune rejection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!