A Titan but not necessarily a ruler: assessing the role of titin during thick filament patterning and assembly.

Anat Rec (Hoboken)

Faculty of Dentistry, Department of Oral Health Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Published: September 2014

The sarcomeres of striated muscle are among the most elaborate and dynamic eukaryotic cellular protein machinery, and the mechanisms by which these semicrystalline filament networks are initially patterned and assembled remain contentious. In addition to the acto-myosin filaments that provide motor function, the sarcomere contains titin filaments, comprised of individual molecules of the giant Ig- and fibronectin domain-rich protein titin. Titin is the largest known protein, containing many structurally distinct domains with a variety of proposed functions, including sarcomere stabilization, the prevention of over-stretching, and returning to resting length after contraction. One molecule of titin, which binds to both the Z-disk and the M-line, spans a half-sarcomere, and is proposed to serve as a "molecular ruler" that dictates the spacing of sarcomeres. The semirigid rod-like A-band region of titin has also been proposed to act as a scaffold for thick filament formation during muscle development, but despite decades of research, this hypothesis has not been rigorously tested. Recent studies in zebrafish have brought into question the necessity for the A-band region of titin during the early stages of sarcomere patterning. In this review, we give an overview of the many different roles of titin in the development and function of striated muscle, and address the validity of the "molecular ruler" model of myofibrillogenesis in light of the current literature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.22987DOI Listing

Publication Analysis

Top Keywords

titin
8
thick filament
8
striated muscle
8
"molecular ruler"
8
a-band region
8
region titin
8
titan ruler
4
ruler assessing
4
assessing role
4
role titin
4

Similar Publications

Mechanisms of epigallocatechin-3-gallate-loaded metal-organic framework in preventing oxidative degradation of shrimp (Litopenaeus vannamei) surimi gel.

Food Chem

January 2025

Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

This work aimed to elucidate the deterioration mechanisms of shrimp surimi gels during refrigerated storage, and the regulatory mechanisms of epigallocatechin-3-gallate loaded cyclodextrin-based metal-organic framework (EGCG@CD-MOF) as a model antioxidant. Labele-free proteomics provided a quantitative analysis of the differential proteomic signatures of degraded proteins. Structural proteins, like myosin, paramyosin, titin, laminin, and α-actinin, along with calcium regulatory proteins, like calcineurin and sarcoplasmic calcium-binding protein were found to be highly susceptible to oxidative degradation during refrigeration.

View Article and Find Full Text PDF

Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.

Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.

Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Titin truncating variants (TTNtv) are the main genetic cause of dilated cardiomyopathies (DCMs). The phenotype and prognosis of probands have been evaluated in several large cohorts. However, few data are available on intrafamilial expressivity.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!