X-linked hypophosphatemia (XLH) is caused by mutations in PHEX. Several other genetic forms of hypophosphatemia have also been described. These disorders share variable clinical presentation ranging from mild hypophosphatemia to severe lower extremity bowing. We report on a 43-year-old woman with short stature, painful leg deformities, and poor dentation. Her biochemical profile showed hypophosphatemia with renal phosphate wasting. Due to unusually severe clinical presentation and absence of mutations in Sanger sequencing of the PHEX gene, quantitative multiplex ligation-dependent probe amplification was performed. A large deletion within the PHEX gene encompassing exons 8 to 11 was identified. We generated a specific junction fragment using long-range PCR and sequenced the junction fragment to determine the exact deletion breakpoints. We found a heterozygous novel complex re-arrangement involving gross deletions, insertions, and inversion of PHEX (hg19:g.22,115,003_22,141,395del;g:22,145,536_22,150,789delinsCins22,114,640_22,114,698invinsA). Thus, the complex re-arrangement including a deletion of coding exons 8 to 11 of the PHEX can be regarded as the cause of XLH in the patient reported here. Phosphate and active vitamin D treatment was initiated with subsequent relief in bone pain and physical improvement. This report expands the spectrum of clinical severity underlying genetic defects in XLH and highlights the importance of conventional medical therapy even at adult age. Furthermore, our findings underscore the importance of search for gene deletions in patients with suspected XLH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.36721 | DOI Listing |
Gene
September 2024
State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China. Electronic address:
Agrobacteria-mediated transformation is widely used in plant genetic engineering to introduce exogenous genes and create mutant lines through random T-DNA insertion and gene disruption. When T-DNA fragments are inserted into the plant genome, it could cause chromosomal abnormalities. In this study, we investigated the genetic basis of pleiotropic phenotypes observed in the T-DNA insertion mutant lnc161.
View Article and Find Full Text PDFMicrobiol Res
September 2023
ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France. Electronic address:
The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees.
View Article and Find Full Text PDFCarbohydr Polym
May 2023
Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, HD1 3DH Huddersfield, United Kingdom. Electronic address:
Heparin, a major anticoagulant drug, comprises a complex mixture of motifs. Heparin is isolated from natural sources while being subjected to a variety of conditions but the detailed effects of these on heparin structure have not been studied in depth. Therefore, the result of exposing heparin to a range of buffered environments, ranging pH values from 7 to 12, and temperatures of 40, 60 and 80 °C were examined.
View Article and Find Full Text PDFInt J Mol Sci
February 2023
Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy.
The mechanisms by which hyperuricemia induces vascular dysfunction and contributes to cardiovascular disease are still debated. Phenotypic transition is a property of vascular smooth muscle cells (VSMCs) involved in organ damage. The aim of this study was to investigate the effects of uric acid (UA) on changes in the VSMC cytoskeleton, cell migration and the signals involved in these processes.
View Article and Find Full Text PDFMolecules
August 2022
Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia.
Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a "holy grail" reaction in catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!