Aim of our project is to further optimize neonatal seizure detection using support vector machine (SVM). First, a Kalman filter (KF) was used to filter both feature and classifier output time series in order to increase temporal precision. Second, EEG baseline feature correction (FBC) was introduced to reduce inter patient variability in feature distributions. The performance of the detection methods is evaluated on 54 multi channel routine EEG recordings from 39 both term and pre-term newborns. The area under the receiver operating characteristics curve (AUC) as well as sensitivity and specificity are used to evaluate the performance of the classification method. SVM without KF and FBC achieves an AUC of 0.767 (sensitivity 0.679, specificity 0.707). The highest AUC of 0.902 (sensitivity 0.801, specificity 0.831) is achieved on baseline corrected features with a Kalman smoother used for training data pre-processing and a KF used to filter the classifier output. Both FBC and KF significantly improve neonatal epileptic seizure detection. This paper introduces significant improvements for the state of the art SVM based neonatal epileptic seizure detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-014-1089-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!