Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modular architecture has been found in most cortical areas of mammalian brains, but little is known about its evolutionary origin. It has been proposed by several researchers that maximizing information transmission among subsystems can be used as a principle for understanding the development of complex brain networks. In this paper, we study how heterogeneous modules develop in coupled-map networks via a genetic algorithm, where selection is based on maximizing bidirectional information transmission. Two functionally differentiated modules evolved from two homogeneous systems with random couplings, which are associated with symmetry breaking of intrasystem and intersystem couplings. By exploring the parameter space of the network around the optimal parameter values, it was found that the optimum network exists near transition points, at which the incoherent state loses its stability and an extremely slow oscillatory motion emerges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2014.07.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!