Living cardiac tissue slices, a pseudo two-dimensional (2D) preparation, have received less attention than isolated single cells, cell cultures, or Langendorff-perfused hearts in cardiac biophysics research. This is, in part, due to difficulties associated with sectioning cardiac tissue to obtain live slices. With moderate complexity, native cell-types, and well-preserved cell-cell electrical and mechanical interconnections, cardiac tissue slices have several advantages for studying cardiac electrophysiology. The trans-membrane potential (Vm) has, thus far, mainly been explored using multi-electrode arrays. Here, we combine tissue slices with optical mapping to monitor Vm and intracellular Ca(2+) concentration ([Ca(2+)]i). This combination opens up the possibility of studying the effects of experimental interventions upon action potential (AP) and calcium transient (CaT) dynamics in 2D, and with relatively high spatio-temporal resolution. As an intervention, we conducted proof-of-principle application of stretch. Mechanical stimulation of cardiac preparations is well-established for membrane patches, single cells and whole heart preparations. For cardiac tissue slices, it is possible to apply stretch perpendicular or parallel to the dominant orientation of cells, while keeping the preparation in a constant focal plane for fluorescent imaging of in-slice functional dynamics. Slice-to-slice comparison furthermore allows one to assess transmural differences in ventricular tissue responses to mechanical challenges. We developed and tested application of axial stretch to cardiac tissue slices, using a manually-controlled stretching device, and recorded Vm and [Ca(2+)]i by optical mapping before, during, and after application of stretch. Living cardiac tissue slices, exposed to axial stretch, show an initial shortening in both AP and CaT duration upon stretch application, followed in most cases by a gradual prolongation of AP and CaT duration during stretch maintained for up to 50 min. After release of sustained stretch, AP duration (APD) and CaT duration reverted to shorter values. Living cardiac tissue slices are a promising experimental model for the study of cardiac mechano-electric interactions. The methodology described here can be refined to achieve more accurate control over stretch amplitude and timing (e.g. using a computer-controlled motorised stage, or by synchronising electrical and mechanical events) and through monitoring of regional tissue deformation (e.g. by adding motion tracking).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbiomolbio.2014.08.006 | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy.
Under low O, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
The purpose of this study was to compare the impact of modified heart preservation techniques with conventional heart preservation techniques on heart transplant recipients. The goal was to determine if these modified preservation techniques could extend the preservation of the donor heart without increasing the risk of recipient mortality. A retrospective analysis was carried out on 763 cases of orthotopic heart transplantation performed at Wuhan Union Hospital and Nanjing First Hospital, from September 2008 to October 2022.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
To investigate the correlation between the density and volume of epicardial adipose tissue(EAT)and acute coronary syndrome (ACS). This study included 355 subjects (mean age: 60.65 ± 9.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFJ Nutr
January 2025
Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, Lublin, Poland.
Background: Systemic inflammation plays a crucial role in the development and progression of chronic heart failure (CHF) across all phenotypes. The continuous release of pro-inflammatory cytokines causes muscle atrophy and adipocyte breakdown, ultimately resulting in cachexia. Long non-coding RNAs (lncRNAs) are emerging as potential biomarkers associated with cachexia, as they indirectly regulate muscle and fat tissue metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!