Relaxases act as DNA selection sieves in conjugative plasmid transfer. Most plasmid relaxases belong to the HUH endonuclease family. TrwC, the relaxase of plasmid R388, is the prototype of the HUH relaxase family, which also includes TraI of plasmid F. In this article we demonstrate that TrwC processes its target nic-site by means of a highly secure double lock and key mechanism. It is controlled both by TrwC-DNA intermolecular interactions and by intramolecular DNA interactions between several nic nucleotides. The sequence specificity map of the interaction between TrwC and DNA was determined by systematic mutagenesis using degenerate oligonucleotide libraries. The specificity map reveals the minimal nic sequence requirements for R388-based conjugation. Some nic-site sequence variants were still able to form the U-turn shape at the nic-site necessary for TrwC processing, as observed by X-ray crystallography. Moreover, purified TrwC relaxase effectively cleaved ssDNA as well as dsDNA substrates containing these mutant sequences. Since TrwC is able to catalyze DNA integration in a nic-site-containing DNA molecule, characterization of nic-site functionally active sequence variants should improve the search quality of potential target sequences for relaxase-mediated integration in any target genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176350 | PMC |
http://dx.doi.org/10.1093/nar/gku741 | DOI Listing |
Introduction: Benign prostatic hyperplasia (BPH) affects a significant proportion of aging males, often requiring surgical intervention when conservative treatments fail.
Case Description: This case report details the management of a 58-year-old male with severe lower urinary tract symptoms and a markedly enlarged prostate, presenting with bladder stones and persistent obstruction despite medication. The patient underwent an open simple prostatectomy but developed bladder neck contracture and recurrent urinary retention, necessitating a suprapubic cystostomy.
Langmuir
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Droplet manipulation on functional surfaces is an urgent problem to be solved. Fast and precise droplet manipulation plays an important role in many applications, such as microreactors and microfluidics. Although numerous techniques have been developed to manipulate droplets by injecting external stimuli, it remains a challenge to achieve high-precision, high-sensitivity, and fast droplet manipulation on smart, slippery response surfaces.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China.
CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.
The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.
View Article and Find Full Text PDFChaos
November 2024
Centre for Mathematical Sciences, Lund University, Märkesbacken 4, 223 62 Lund, Sweden.
Natural and technological networks exhibit dynamics that can lead to complex cooperative behaviors, such as synchronization in coupled oscillators and rhythmic activity in neuronal networks. Understanding these collective dynamics is crucial for deciphering a range of phenomena from brain activity to power grid stability. Recent interest in co-evolutionary networks has highlighted the intricate interplay between dynamics on and of the network with mixed time scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!