Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cure fraction models have been widely used to analyze survival data in which a proportion of the individuals is not susceptible to the event of interest. In this article, we introduce a bivariate model for survival data with a cure fraction based on the three-parameter generalized Lindley distribution. The joint distribution of the survival times is obtained by using copula functions. We consider three types of copula function models, the Farlie-Gumbel-Morgenstern (FGM), Clayton and Gumbel-Barnett copulas. The model is implemented under a Bayesian framework, where the parameter estimation is based on Markov Chain Monte Carlo (MCMC) techniques. To illustrate the utility of the model, we consider an application to a real data set related to an invasive cervical cancer study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2014.07.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!