Longitudinal Analysis of DNA Methylation in CD34+ Hematopoietic Progenitors in Myelodysplastic Syndrome.

Stem Cells Transl Med

Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan; Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; The Danish Stem Cell Centre (DanStem), University of Copenhagen, Copenhagen, Denmark; Imperial College London, London, United Kingdom; All About Science Japan, Kobe, Japan; Department of Systems Medicine, Mitsunada Sakaguchi Laboratory, Keio University School of Medicine, Institute of Integrated Medical Research, Tokyo, Japan

Published: October 2014

Myelodysplastic syndrome (MDS) is a disorder of hematopoietic stem cells (HSCs) that is often treated with DNA methyltransferase 1 (DNMT1) inhibitors (5-azacytidine [AZA], 5-aza-2'-deoxycytidine), suggesting a role for DNA methylation in disease progression. How DNMT inhibition retards disease progression and how DNA methylation contributes to MDS remain unclear. We analyzed global DNA methylation in purified CD34+ hematopoietic progenitors from MDS patients undergoing multiple rounds of AZA treatment. Differential methylation between MDS phenotypes was observed primarily at developmental regulators not expressed within the hematopoietic compartment and was distinct from that observed between healthy hematopoietic cell types. After AZA treatment, we observed only limited DNA demethylation at sites that varied between patients. This suggests that a subset of the stem cell population is resistant to AZA and provides a basis for disease relapse. Using gene expression data from patient samples and an in vitro AZA treatment study, we identified differentially methylated genes that can be activated following treatment and that remain silent in the CD34+ stem cell compartment of high-risk MDS patients. Haploinsufficiency in mice of one of these genes (NR4A2) has been shown to lead to excessive HSC proliferation, and our data suggest that suppression of NR4A2 by DNA methylation may be involved in MDS progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181398PMC
http://dx.doi.org/10.5966/sctm.2014-0035DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
aza treatment
12
cd34+ hematopoietic
8
hematopoietic progenitors
8
myelodysplastic syndrome
8
disease progression
8
mds patients
8
stem cell
8
dna
7
methylation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!