Tensor decomposition is frequently used in image processing and machine learning for its ability to express higher order characteristics of data. Among tensor decomposition methods, N-mode singular value decomposition (SVD) is widely used owing to its simplicity. However, the data dimension often becomes too large to perform N-mode SVD directly due to memory limitation. An incremental method to N-mode SVD can be used to resolve this issue, but existing approaches only provide a result, which is just enough to solve discriminative problems, not the full factorization result. In this paper, we present a complete derivation of the incremental N-mode SVD, which can be applied to generative models, accompanied by a technique that can reduce the computational cost by reordering calculations. The proposed incremental N-mode SVD can also be used effectively to update the current result of N-mode SVD when new training data is received. The proposed method provides a very good approximation of N -mode SVD for the experimental data, and requires much less computation in updating a multilinear model.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2014.2346012DOI Listing

Publication Analysis

Top Keywords

n-mode svd
24
incremental n-mode
12
svd
8
generative models
8
tensor decomposition
8
n-mode
6
incremental
4
svd large-scale
4
large-scale multilinear
4
multilinear generative
4

Similar Publications

Tensor decomposition is frequently used in image processing and machine learning for its ability to express higher order characteristics of data. Among tensor decomposition methods, N-mode singular value decomposition (SVD) is widely used owing to its simplicity. However, the data dimension often becomes too large to perform N-mode SVD directly due to memory limitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!