Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133243PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104684PLOS

Publication Analysis

Top Keywords

clonal expansion
8
pseudogymnoascus destructans
8
destructans genotype
8
genotype north
8
north america
8
phenotypic expression
8
north american
8
destructans
6
isolates
5
expansion pseudogymnoascus
4

Similar Publications

Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, is characterized by progressive neuronal loss and the accumulation of misfolded proteins such as amyloid-β and tau. While neuroinflammation, mediated by microglia and brain-resident macrophages, plays a pivotal role in AD pathogenesis, the intricate interactions among age, genes, and other risk factors remain elusive. Somatic mutations, known to accumulate with age, instigate clonal expansion across diverse cell types, impacting both cancer and non-cancerous conditions.

View Article and Find Full Text PDF

Neo-enhancers in T-cell acute lymphoblastic Leukaemia (T-ALL) and beyond.

Int J Cancer

January 2025

Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.

T-cell acute lymphoblastic leukaemia (T-ALL) is a rare aggressive haematological malignancy characterised by the clonal expansion of immature T-cell precursors. It accounts for 15% of paediatric and 25% of adult ALL. T-ALL is associated with the overexpression of major transcription factors (TLX1/3, TAL1, HOXA) that drive specific transcriptional programmes and constitute the molecular classifying subgroups of T-ALL.

View Article and Find Full Text PDF

Deciphering the effect of UM171 on human hematopoietic progenitor cell fate through clonal analysis.

Nat Commun

January 2025

Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.

Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized.

View Article and Find Full Text PDF

Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses.

View Article and Find Full Text PDF

Introduction: Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!