Severe hemorrhagic shock and resuscitation is a state of global body ischemia and reperfusion that causes myocardial and cerebral dysfunction. We investigated whether remote ischemic preconditioning (RIPC) would reduce myocardial and cerebral ischemia and reperfusion injuries after hemorrhagic shock as the result of the K(ATP) channel activation. Twenty-one male rats were randomized into three groups: RIPC, RIPC with K(ATP) channel blocker, and control. Remote ischemic preconditioning was induced by four cycles of 5 min of limb ischemia followed by reperfusion for 5 min. Hemorrhagic shock was induced by removing 50% of the estimated total blood volume during an interval of 1 h. Thirty minutes after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The animals were monitored for 2 h and observed for an additional 72 h. Myocardial function was measured by echocardiography, and sublingual microcirculation was measured by a sidestream dark-field imaging device at baseline, 1 h after bleeding, 30 min after the completion of bleeding, 30 min after reinfusion, and hourly intervals thereafter. The survival and neurological function were evaluated at 12, 24, 48, and 72 h after reinfusion. At 2 h after reinfusion, ejection fraction and myocardial performance index were significantly better in the RIPC group than in the control group (P < 0.01). The sublingual microvascular flow index and perfused vessel density were significantly greater after reinfusion in the RIPC group than that in the control group (P < 0.01). The duration of survival was significantly longer, and neurological deficit score was significantly better in the RIPC group than the control animals (P < 0.01). Pretreatment with the K(ATP) channel blocker (glibenclamide) completely abolished the myocardial and cerebral protective effects of RIPC. We demonstrate, for the first time, that after severe hemorrhagic shock and resuscitation, RIPC mitigated myocardial and neurological dysfunction with improved survival by activation of the K(ATP) channel.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000000197DOI Listing

Publication Analysis

Top Keywords

katp channel
20
hemorrhagic shock
20
remote ischemic
12
ischemic preconditioning
12
ischemia reperfusion
12
myocardial cerebral
12
ripc group
12
group control
12
myocardial neurological
8
neurological dysfunction
8

Similar Publications

Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!