Platelet aggregation in response to collagen, adenosine diphosphate and arachidonic acid was studied prospectively in 30 children with Type 1 (insulin-dependent) diabetes mellitus. The studies began on admission to hospital and continued throughout the two years following diagnosis. The results were compared with those in 44 health control children. Collagen-induced aggregation was significantly decreased in the diabetic children on admission in comparison to the healthy children. In contrast, the aggregation induced by adenosine diphosphate (1.1 mumols/l, p less than 0.05) and arachidonic acid (0.25 mmol/l, p less than 0.05) was increased on admission. The magnitude of the platelet shape change after adenosine diphosphate stimulation was small at the onset of the disease but was significantly increased towards normal during the two years of follow-up. On admission, the primary wave aggregation induced by adenosine diphosphate was positively and significantly correlated to some of the lipoprotein fractions that were disturbed at that time, especially triglycerides in high-density lipoproteins. After two years of treatment the platelet aggregability in the diabetic children had been restored to normal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00274532 | DOI Listing |
Int J Gynecol Cancer
January 2025
Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China. Electronic address:
Objective: Homologous recombination deficiency assays, guiding treatment of poly (adenosine diphosphate ribose) polymerase inhibitors, are increasingly applied in clinics. This study aimed to evaluate the predictive performance of homologous recombination deficiency status at genomic and functional perspective on the efficacy of platinum-based chemotherapy in ovarian cancer.
Methods: Between 2016 and 2019, 134 patients with high-grade ovarian cancer were retrospectively analyzed.
Nucleic Acids Res
January 2025
Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Medical Biochemistry, Institute of Health, Dambi Dollo University, Dambi Dolo, Ethiopia.
Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFNat Commun
January 2025
Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!