We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles. Our theoretical calculation on two-photon polarization correlation and interference as a function of mean free path is in agreement with our experiment data. We conclude that quantum correlation of a polarization-entangled photon pair is better preserved than a polarization-correlated photon pair as one photon of the pair scatters through a random medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.004808 | DOI Listing |
Eur Phys J C Part Fields
December 2024
Department of Physics and Astronomy, University College London, London, WC1E 6BT UK.
J Am Chem Soc
December 2024
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
Department of Electrical and Electronic Engineering and H. H. Wills Physics Laboratory, QET Labs and Photonics and Quantum Group, University of Bristol, Bristol BS8 1UB, UK.
This paper presents a short history of the discovery by Rodney Loudon and Heidi Fearn of the counter-intuitive destructive interference effect occurring when two indistinguishable photons meet at a beamsplitter. This effect, commonly known as the Hong Ou Mandel effect, underpins much of present day photonic quantum information processing. Here I try to review its development from inception to present day proposals of million qubit photonic quantum computers.
View Article and Find Full Text PDFAdv Mater
December 2024
Wuzhen Laboratory, Jiaxing, 314500, P. R. China.
Phase boundary is highly recognized for its capability in engineering various physical properties of ferroelectrics. Here, field-induced polarization rotation is reported in a high-performance (K, Na)NbO-based ferroelectric system at the rhombohedral-tetragonal phase boundary. First, the lattice structure is examined from both macroscopic and local scales, implementing Rietveld refinement and pair distribution function analysis, respectively.
View Article and Find Full Text PDFAdv Mater
December 2024
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
Vectorial metasurface holography, allowing for independent control over the amplitude, phase, and polarization distribution of holographic images enabled by metasurfaces, plays a crucial role in the realm of optical display, optical, and quantum communications. However, previous research on vectorial metasurface holography has typically been restricted to single degree of freedom input and single channel output, thereby demonstrating a very limited modulation capacity. This work presents a novel method to achieve multi-channel vectorial metasurface holography by harnessing spin-orbit-locking vortex beams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!