A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide from IFNγ-primed macrophages modulates the antimicrobial activity of β-lactams against the intracellular pathogens Burkholderia pseudomallei and Nontyphoidal Salmonella. | LitMetric

Nitric oxide from IFNγ-primed macrophages modulates the antimicrobial activity of β-lactams against the intracellular pathogens Burkholderia pseudomallei and Nontyphoidal Salmonella.

PLoS Negl Trop Dis

Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, United States of America.

Published: August 2014

Our investigations show that nonlethal concentrations of nitric oxide (NO) abrogate the antibiotic activity of β-lactam antibiotics against Burkholderia pseudomallei, Escherichia coli and nontyphoidal Salmonella enterica serovar Typhimurium. NO protects B. pseudomallei already exposed to β-lactams, suggesting that this diatomic radical tolerizes bacteria against the antimicrobial activity of this important class of antibiotics. The concentrations of NO that elicit antibiotic tolerance repress consumption of oxygen (O2), while stimulating hydrogen peroxide (H2O2) synthesis. Transposon insertions in genes encoding cytochrome c oxidase-related functions and molybdenum assimilation confer B. pseudomallei a selective advantage against the antimicrobial activity of the β-lactam antibiotic imipenem. Cumulatively, these data support a model by which NO induces antibiotic tolerance through the inhibition of the electron transport chain, rather than by potentiating antioxidant defenses as previously proposed. Accordingly, pharmacological inhibition of terminal oxidases and nitrate reductases tolerizes aerobic and anaerobic bacteria to β-lactams. The degree of NO-induced β-lactam antibiotic tolerance seems to be inversely proportional to the proton motive force (PMF), and thus the dissipation of ΔH+ and ΔΨ electrochemical gradients of the PMF prevents β-lactam-mediated killing. According to this model, NO generated by IFNγ-primed macrophages protects intracellular Salmonella against imipenem. On the other hand, sublethal concentrations of imipenem potentiate the killing of B. pseudomallei by NO generated enzymatically from IFNγ-primed macrophages. Our investigations indicate that NO modulates the antimicrobial activity of β-lactam antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133387PMC
http://dx.doi.org/10.1371/journal.pntd.0003079DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
16
ifnγ-primed macrophages
12
activity β-lactam
12
antibiotic tolerance
12
nitric oxide
8
modulates antimicrobial
8
burkholderia pseudomallei
8
nontyphoidal salmonella
8
β-lactam antibiotics
8
β-lactam antibiotic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!