Purpose: Abnormal global DNA methylation levels are associated with many diseases. In this study, we examined long interspersed nuclear elements-1 (LINE-1) methylation as a biomarker for abnormal global DNA methylation and aldosterone-producing adenoma (APA).

Methods: Tissues from 25 APA and 6 normal adrenal glands (NAs) were analyzed for LINE-1 methylation by real-time methylation-specific polymerase chain reaction. The estimated LINE-1 methylation level was then tested for correlation with the clinicopathologic parameters of APA patients.

Results: The methylation index (MI) level for LINE-1 was 0.91 in NA samples and 0.77 in APA samples (P < 0.001). For the APA samples, there were no statistical correlations between the MI level and various clinicopathologic parameters such as gender (P = 0.07).

Conclusion: LINE-1 methylation is significantly lower in APA samples than in NA samples. LINE-1 methylation is not correlated with the clinical characteristics of APA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129024PMC

Publication Analysis

Top Keywords

line-1 methylation
24
apa samples
12
methylation
9
methylation levels
8
aldosterone-producing adenoma
8
abnormal global
8
global dna
8
dna methylation
8
methylation level
8
clinicopathologic parameters
8

Similar Publications

Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming.

Radiat Environ Biophys

January 2025

Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.

Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.

View Article and Find Full Text PDF

Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.

Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.

View Article and Find Full Text PDF

The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.

View Article and Find Full Text PDF

Gene Polymorphisms and DNA Methylation in Idiopathic Spontaneous Preterm Birth.

Medicina (Kaunas)

December 2024

Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.

: Preterm birth (PTB) is a complex condition with various contributing factors, including genetic and epigenetic influences such as DNA methylation. Methylenetetrahydrofolate reductase (MTHFR) plays a critical role in DNA methylation and the remethylation of homocysteine. This study aimed to investigate the association between maternal MTHFR C677T and A1298C polymorphisms, LINE-1 DNA methylation levels, and the risk of idiopathic spontaneous preterm birth (SPTB) in Caucasian women from Croatia and Slovenia.

View Article and Find Full Text PDF

Background: Global methylation refers to the total methylation in the DNA and can also be inferred from the Line 1 and Alu regions, as these repeats are very abundant in the genome. The main function of DNA methylation is to control gene expression and is associated with both normal and pathological mechanisms. DNA methylation depends on enzymes that generate the methyl radical (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!