Objective: To evaluate and compare the levels of α-tocopherol in colostrum and in the serum of healthy and diabetic mothers.
Methods: This cross-sectional study enrolled 51 volunteer mothers, 20 with the diagnosis of gestational diabetes mellitus and 31 without associated diseases. Serum and colostrum samples were collected in fasting in the immediate postpartum period and α-tocopherol was analyzed by high performance liquid chromatography (HPLC). In order to define the nutritional status of vitamin E, the cutoff point for the serum (697.7µg/dL) was adopted. Student's t-test for independent variables compared the average concentrations of α-tocopherol in the serum and in the colostrum between control and gestational diabetes mellitus groups. Pearson's correlation was used to assess the relationship between the concentration of α-tocopherol in serum and colostrum for both groups. Differences were considered significant when p<0.05.
Results: The α-tocopherol concentration in colostrum was 1,483.1±533.8µg/dL for Control Group and 1,368.8±681.8µg/dL for diabetic women, without differences between groups (p=0.50). However, α-tocopherol concentration in the serum was 1,059.5±372.7µg/dL in the Control Group and 1,391.4±531.5µg/dL in the diabetic one (p<0.01). No correlation was found between the concentration of α-tocopherol in the serum and in the colostrum for control and diabetic groups.
Conclusions: The groups had adequate nutritional status of vitamin E. Gestational diabetes was not associated with changes in α-tocopherol concentration in colostrum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183008 | PMC |
http://dx.doi.org/10.1590/0103-0582201432214113 | DOI Listing |
Vet Sci
January 2025
Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
This study aimed to investigate the effects of maternal glycerol monolaurate complex (GML) and antibiotic (acetylisovaleryltylosin tartrate, ATLL) supplementation during late gestation and lactation on the reproductive performance of sows and the growth performance of piglets. In total, 64 pregnant sows were randomly divided into control, antibiotic, 0.1% GML, and 0.
View Article and Find Full Text PDFTransl Anim Sci
November 2024
Department of Animal Sciences, Greensboro, NC, 27411, USA.
Heat stress (HS) poses a significant challenge to the United States swine industry. Sows and their piglets are particularly vulnerable to HS, as the periparturient phase is characterized by heightened metabolism and increased oxidative stress and inflammation. The study examined the effects of using conductive electronic cooling pads (ECP) and dietary supplementation with 4% Moringa (M) leaf powder on controlling oxidative stress and inflammation caused by HS in sows and their piglets.
View Article and Find Full Text PDFVet J
January 2025
Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
Lactation initiates with a massive Ca secretion into milk. Within 24-48h post-calving, high-producing, older-parity dairy cows are highly susceptible to Ca disturbances. We hypothesized that the abrupt cessation of milking within this critical period would delay Ca secretion into milk, allowing lactating cows more time to stabilize their Ca homeostasis mechanisms and potentially lower the risk of blood Ca decline in the immediate postpartum period.
View Article and Find Full Text PDFEquine Vet J
January 2025
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
Background: Foals suffer from total failure to transfer passive immunity (TFTPI) when serum immunoglobulin (IgG) is <4 g/L, and partial failure to transfer passive immunity (PFTPI) when serum IgG is 4-8 g/L.
Objectives: To explore risk factors for poor serum IgG concentration.
Study Design: Retrospective observational study.
Can J Vet Res
January 2025
Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China (Han, Sun, Gu, J. Wang, X. Wang, Tao, Z. Wang, Liu); Jiangxi Agricultural University, No. 1225, Zhimin Avenue, Xinjian District, Nanchang City 330045, China (Gu).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!