In Vitro and in vivo characterization of wireless and passive micro system enabling gastrointestinal pressure monitoring.

Biomed Microdevices

State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.

Published: December 2014

This paper presents a wireless and passive micro pressure system based on the LC mutual inductance detection mechanism for gastrointestinal (GI) pressure monitoring. The micro pressure system is composed of a sensor capsule (a pressure sensitive micro capacitive sensor in series with an induction coil to form an LC tank) and a detection unit (a detection coil connected with a network analyzer). The pressure variations under measurement lead to changes in the capacitance of the pressure sensor and therefore a shift in the LC tank resonant frequency, quantified by the impedance measurement of the detection coil. The pressure sensor was fabricated using microfabrication processes with key parameters optimized. The in vitro characterization of the micro pressure system recorded a sensitivity of 0.2491 kHz/kPa (-10 kPa to 30 kPa). One-month rabbit stomach pressure monitoring was conducted based on the developed micro pressure system as a confirmation of device long term in vivo stability. Furthermore, rabbit stomach pressure variations before and after food feeding was recorded and compared where three distinctive contraction patterns (random contraction with low amplitude, irregular strong contractions and regular contraction in a cyclic manner) following food feeding were located. Compared to previous reported GI pressure sensors, this LC tank is featured with simple device structure without batteries and electrical components for energy transfer. Both in vitro and in vivo characterization confirm the functionality of the system, which may enable the gastrointestinal motility study in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-014-9890-0DOI Listing

Publication Analysis

Top Keywords

micro pressure
16
pressure system
16
pressure
13
pressure monitoring
12
vitro vivo
8
vivo characterization
8
wireless passive
8
passive micro
8
gastrointestinal pressure
8
detection coil
8

Similar Publications

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.

View Article and Find Full Text PDF

Introduction And Objective: Observable autonomous rhythmic changes in intravesical pressure, termed bladder wall micromotion, is a phenomenon that has been linked to urinary urgency, the key symptom in overactive bladder (OAB). However, the mechanism through which micromotion drives urinary urgency is poorly understood. In addition, micromotion is inherently difficult to study in human urodynamics due to challenges distinguishing it from normal cyclic physiologic processes such as pulse rate, breathing, rectal contractions, and ureteral jetting.

View Article and Find Full Text PDF

This paper presents a surrogate-assisted global and distributed local collaborative optimization (SGDLCO) algorithm for expensive constrained optimization problems where two surrogate optimization phases are executed collaboratively at each generation. As the complexity of optimization problems and the cost of solutions increase in practical applications, how to efficiently solve expensive constrained optimization problems with limited computational resources has become an important area of research. Traditional optimization algorithms often struggle to balance the efficiency of global and local searches, especially when dealing with high-dimensional and complex constraint conditions.

View Article and Find Full Text PDF

Bioinspired Smart Triboelectric Soft Pneumatic Actuator-Enabled Hand Rehabilitation Robot.

Adv Mater

January 2025

Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.

Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!