The tumor suppressor gene CD82, also known as KAI1, may act as a general suppressor of metastasis in numerous types of cancer. It is hypothesized that downregulation of CD82 gene expression may be an important factor in the induction of hepatocellular carcinoma (HCC), however the mechanism for this requires further study. In the present study, the relative mRNA and protein expression levels of the CD82 gene were determined in HCC and adjacent non‑tumor tissues. The association between the CD82 gene and the hepatitis B virus (HBV) was also investigated, by quantitative polymerase chain reaction, western blotting, luciferase reporter assays and mass spectrometry with matrix‑assisted laser desorption/ionization time‑of‑flight mass array. CD82 expression was shown to be suppressed in response to HCC promoter methylation. Relative CD82 mRNA and protein expression levels were downregulated in HCC tissues (P<0.05). HBx protein inhibited CD82 promoter activity and subsequently the mRNA and protein expression levels. Furthermore, it was demonstrated that HBV could inhibit the expression of CD82 at the transcriptional level, and repress the activity of the CD82 promoter through hypermethylation. In addition, the methyl enzyme inhibitor 5‑aza‑CdR could induce the CD82 promoter activity and the relative expression level of CD82 mRNA, as observed by an increase in luciferase activity driven by the CD82 promoter. The observations of the present study suggest that hypermethylation of the CD82 promoter may be an event leading to the development of HCC. Low expression of CD82 is likely to be involved in tumor progression. HBV may inhibit the expression of CD82 through hypermethylation of the promoter in hepatoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2014.2495 | DOI Listing |
Gene
March 2025
Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China. Electronic address:
Osteonecrosis of femoral head (ONFH) is characterized not only by ischemic bone tissue necrosis but also by cartilage degeneration, which plays an essential role in the pathogenesis of ONFH. The molecular communication between tissues contributes to disease progression, however the communication between cartilage and subchondral bone in the progression of ONFH remains unclear. In this study, we integrated transcriptomic data from ONFH cartilage and subchondral bone, exploring common differentially expressed genes (DEGs), pathway and function enrichment analyses, the protein-protein interaction (PPI) network, and hub genes to comprehensively study molecular integration.
View Article and Find Full Text PDFChem Biol Drug Des
October 2024
Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey.
Apitherapy has started to gain tremendous recognition because of extraordinary pharmacological importance of honeybee-related ingredients and their derivatives. There has been a renewed interest in the bee venom-based therapies. Interdisciplinary researchers are studying the chemistry and translational value of venom for effective cancer treatment.
View Article and Find Full Text PDFThe Changle goose (CLG), a Chinese indigenous breed, is celebrated for its adaptability, rapid growth, and premium meat quality. Despite its agricultural value, the exploration of its genomic attributes has been scant. Our study entailed whole-genome resequencing of 303 geese across CLG and five other Chinese breeds, revealing distinct genetic diversity metrics.
View Article and Find Full Text PDFJ Hepatocell Carcinoma
August 2024
Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
Ann Hematol
September 2024
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Acute myeloid leukemia (AML) is a notably lethal disease, characterized by malignant clonal proliferation of hematopoietic stem cells in the bone marrow. This study seeks to unveil potential therapeutic targets for AML, using a combined approach of microarray analysis and Mendelian randomization (MR). We collected data samples from the Gene Expression Omnibus (GEO) database and extracted pQTL data from genome-wide association studies (GWAS) to identify overlapping genes between the DEGs and GWAS data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!