Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays.

Biochim Biophys Acta

Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. Electronic address:

Published: November 2014

The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2014.07.007DOI Listing

Publication Analysis

Top Keywords

recombinant antibody
24
antibody fragments
24
material-binding peptides
12
antibody
8
ligand antibodies
8
site-directed immobilization
8
immobilization technologies
8
recombinant
6
fragments
6
immobilization
6

Similar Publications

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Background: Schistosoma haematobium is the causative pathogen for urogenital schistosomiasis. To achieve progress towards schistosomiasis elimination, there is a critical need for developing highly sensitive and specific tools to monitor transmission in near-elimination settings. Although antibody detection is a promising approach, it is usually unable to discriminate active infections from past ones.

View Article and Find Full Text PDF

Objective: Emicizumab promotes efficacious hemostasis in persons with hemophilia A persons with hemophilia A with and without inhibitors. Primary analyses of real-world data and clinical trials have shown emicizumab efficacy and safety; however, long-term data are limited.

Methods: This retrospective study was conducted to assess real-world long-term outcomes of pediatric patients on emicizumab in our hemophilia center between the period of February 2018 and September 2023.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are established treatment options for type 2 diabetes (T2D). In addition to their glycemic benefit, GLP-1 RAs also induce weight loss by suppressing appetite via hypothalamic pathways. However, it remains unclear whether weight reduction is the primary driver of glycemic improvement.

View Article and Find Full Text PDF

ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects.

J Clin Immunol

January 2025

Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.

Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!