The density functional theory (DFT) was used to investigate the chemical behavior of C60 hosting neutral guest molecules (NGM). The deformed atoms in molecules (DAM) allowed identifying the regions of electron density depletion and accumulation. The studied NGM are CH4, NH3, H2O, and HF. Based on dipole moment and polarizabilities analyses it is predicted that the NGM@C60 should be more soluble in polar solvents than C60. The deformations on the surface electron density of the fullerenes explain this finding, which might be relevant for further applications of these systems. It was found that the intrinsic reactivity of studied NGM@C60 is only moderately higher than that of C60. This trend is supported by the global reactivity indexes and the frontier orbitals analyses. The free radical scavenging activity of the studied systems, via single electron transfer, was found to be strongly dependent on the chemical nature of the reacting free radical. The presence of the studied NGM inside the C60 influences only to some extent the reactivity of C60 toward free radicals. The distortion of the electron density on the C60 cage, caused by the NGM, is directly related to the electron withdrawing capacity of the later.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-014-2412-4 | DOI Listing |
Small
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Assam University, Silchar-788011, India.
Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
Purpose: The potential of spectral images, particularly electron density and effective Z-images, generated by dual-energy computed tomography (DECT), for the histopathologic classification of lung cancer remains unclear. This study aimed to explore which imaging factors could better reflect the histopathological status of lung cancer.
Method: The data of 31 patients who underwent rapid kV-switching DECT and subsequently underwent surgery for lung cancer were analyzed.
J Phys Chem C Nanomater Interfaces
January 2025
Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, Garching 85748, Germany.
Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).
View Article and Find Full Text PDFHeliyon
January 2025
Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA.
Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!