Spore suspensions of Aspergillus oryzae NRRL 3484 were subjected to mutagenesis using ultraviolet-irradiation followed by chemical treatments to improve the biosynthesis of cellulase. Ten mutant strains namely UEAC7, UEAR5, UNAC4, UNAC16, UNAR19, UNBC7, UNBR3, UNBR10, UNBR23 and UNBR25 were selected and their extracellular cellulase activities were assayed. Mutant UNAC4 gave the highest cellulase production [2,455 ± 28 U/g-dry substrate (ds) for filter paper-ase (FP-ase)] in a yield 4-fold exceeding that of the wild type strain (578 ± 5.0 U/g-ds for FP-ase). Rice straw (RS) was used as a sole carbon source for the enzyme production at a concentration of 10 % (w/v). Maximum cellulase production was achieved at initial medium pH 5.5, initial moisture content 77 % and an incubation temperature 28 °C on the fifth day of growth. NH4Cl proved to be the suitable added nitrogen source for maximum enzyme production followed by peptone. These results clearly indicate the cost-effectiveness of solid state fermentation technology in the economic production of extracellular cellulase. The hyper-production of cellulase by mutant strain UNAC4 has potential for industrial processes that convert lignocellulosic material (e.g. RS) into products of commercial value such as glucose and biofuels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-014-0255-8DOI Listing

Publication Analysis

Top Keywords

extracellular cellulase
12
aspergillus oryzae
8
oryzae nrrl
8
nrrl 3484
8
cellulase production
8
enzyme production
8
cellulase
7
production
5
improvement aspergillus
4
3484 mutagenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!