AI Article Synopsis

  • 1,10-Phenanthroline (Phen) is a widely used ligand for transition metal ions but is difficult to oxidize in water due to its high electro-oxidation potential.
  • Researchers reported a successful oxidation of Phen into 1,10-phenanthroline-5,6-dione (Phen-dione) using a modified glassy carbon electrode with multiwalled carbon nanotubes (MWCNT), facilitating effective copper ion recognition.
  • The structure of the oxidized product was confirmed through various characterization techniques, establishing that Phen-dione complexed with copper ions through its nitrogen atoms.

Article Abstract

1,10-Phenanthroline (Phen) is a well-known benchmark ligand and has often been used in the coordination chemistry for the complexation of transition metal ions, such as Fe(2+), Ni(2+), and Co(2+). Because the electro-oxidation potential of Phen is much higher (>2 V versus Ag/AgCl) than the water decomposition potential, i.e., ∼1.5 V versus Ag/AgCl, in pH 7, it is practically difficult to electro-oxidize Phen in aqueous medium using any conventional electrodes, such as glassy carbon electrode (GCE), gold, and platinum. Interestingly, herein, we report an unexpected oxidation of Phen to a highly redox active 1,10-phenanthroline-5,6-dione (Phen-dione) and its confinement on a multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE/MWCNT@Phen-dione) surface by potential cycling of Phen-adsorbed GCE/MWCNT (GCE/MWCNT@Phen) from -1 to 1 V versus Ag/AgCl in pH 7 phosphate buffer solution. GCE/MWCNT@Phen-dione showed selective recognition of copper ion (GCE/MWCNT@Phen-dione-Cu(2+)) by catalyzing the hydrogen peroxide reduction reaction in a neutral pH solution. The precise structure of the Phen electro-oxidized product has been identified after characterizing the electrode and/or ethanolic extract of the product by various techniques, such as Raman, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) (for copper complex), liquid chromatography-mass spectrometry (LC-MS), electrospray ionization-mass spectrometry (ESI-MS) (for copper complex), cyclic voltammetry (CV), and in situ electrochemical quartz crystal microbalance (EQCM) and comparing electrochemical behavior of several control compounds, such as phenanthrene and 9,10-phenanthrenequinone. It is concluded that the product formed is 1,10-phenanthroline-5,6-dione, wherein the dione position is ortho to each other and the copper ion is complexed with nitrogen of the phenanthroline ring. With extended electrochemical oxidation of a structurally similar ligand, 2,2'-bipyridine failed to show any such electrochemical dynamics. Finally, applicability of GCE/MWCNT@Phen-dione-Cu(2+) for electrochemical sensing of hydrogen peroxide in a couple of real samples is successfully demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la502651wDOI Listing

Publication Analysis

Top Keywords

copper ion
12
hydrogen peroxide
12
versus ag/agcl
12
electrochemical behavior
8
multiwalled carbon
8
carbon nanotube
8
selective recognition
8
recognition copper
8
glassy carbon
8
carbon electrode
8

Similar Publications

Correction for 'Formulation and mechanism of copper tartrate - a novel anode material for lithium-ion batteries' by Matthew Teusner , , 2023, , 21436-21447, https://doi.org/10.1039/D3CP02030D.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Antimicrobial properties of bimetallic-containing mesoporous bioglass against .

J Dent Sci

January 2025

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.

View Article and Find Full Text PDF

Background: Long non-coding ribonucleic acids (lncRNAs) regulate messenger RNA (mRNA) expression and influence cancer development and progression. Cuproptosis, a newly discovered form of cell death, plays an important role in cancer. Nonetheless, additional research investigating the association between cuproptosis-related lncRNAs and prostate cancer (PCa) prognosis is required.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!