Aims: PTBP3 overexpression inhibits the differentiation of leukemia cells; however, its effects on the differentiation and proliferation of solid cancer cells remain unclear. Thus, the impact of PTBP3 on the differentiation and proliferation of gastric cancer cells was investigated.
Main Methods: PTBP3 expression was analyzed in normal and tumor tissues using immunohistochemistry. A xenograft model was established in nude mice by subcutaneous injection of untransfected human gastric cancer MKN45 cells or those expressing a control vector or PTBP3 siRNA. We analyzed the tumor inhibition rate, the expression of PTBP3, the PCNA-positive rate and the serum levels of CEA, CA199, CA125, LDH, ALP and γ-GT in different groups.
Key Findings: The tumor weights in the PTBP3 siRNA group were significantly lower than that of the MKN45 cell control group (P<0.001). Immunohistochemistry analysis of PCNA expression revealed that it was markedly reduced after PTBP3 silencing. ELISAs showed that the serum levels of CEA and CA199 tumor markers as well as LDH and ALP were reduced after PTBP3 silencing. Transmission electron microscopy revealed that MKN45 cells expressing PTBP3 siRNA had reduced nuclear-to-cytoplasmic ratio and regular nuclei, suggesting differentiation.
Significance: PTBP3 may promote proliferation and inhibit the differentiation of human gastric cancer MKN45 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2014.07.038 | DOI Listing |
J Clin Invest
January 2025
Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.
Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.
Ann Surg Oncol
January 2025
Division of General Surgery, Department of Biomedical Science for Health, IRCCS Galeazzi - Sant'Ambrogio Hospital, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Milan, Italy.
Ann Surg Oncol
January 2025
Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.
Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.
Mol Biol Rep
January 2025
Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Background: The methyltransferase gene family is known for its diverse biological functions and critical role in tumorigenesis. This study aimed to identify these family genes in common gastrointestinal (GI) cancers using comprehensive methodologies.
Methods: Gene identification involved analysis of scientific literature and insights from The Cancer Genome Atlas (TCGA) database.
Langmuir
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!