On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13681DOI Listing

Publication Analysis

Top Keywords

plate boundary
16
iquique earthquake
16
earthquake
8
northern chile
8
seismic gap
8
seismic clusters
8
plate interface
8
locked patch
8
plate
6
seismic
6

Similar Publications

Physics-informed deep learning quantifies propagated uncertainty in seismic structure and hypocenter determination.

Sci Rep

January 2025

Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 2360001, Japan.

Subsurface seismic velocity structure is essential for earthquake source studies, including hypocenter determination. Conventional hypocenter determination methods ignore the inherent uncertainty in seismic velocity structure models, and the impact of this oversight has not been thoroughly investigated. Here, we address this issue by employing a physics-informed deep learning (PIDL) approach that quantifies uncertainty in two-dimensional seismic velocity structure modeling and its propagation to hypocenter determination by introducing neural network ensembles trained on active seismic survey data, earthquake observation data, and the physical equation of wavefront movement.

View Article and Find Full Text PDF

Plate tectonics predicts that mountain ranges form by tectono-magmatic processes at plate boundaries, but high topography is often observed along passive margins far from any plate boundary. The high topography of the Scandes range at the Atlantic coast of Fennoscandia is traditionally assumed isostatically supported by variation in crustal density and thickness. Here we demonstrate, by our Silverroad seismic profile, that the constantly ~44 km thick crust instead is homogenous above the Moho, and Pn-velocity abruptly change from 7.

View Article and Find Full Text PDF

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.

View Article and Find Full Text PDF

Objective: Finite element analysis (FEA) of the biomechanical properties of the modified extraoral distractor device used in the mandibular distraction of craniofacial microsomia patients.

Materials And Methods: Finite element analysis (FEA) models of 5 patients under 2 working conditions, the instance when the distractor is activated and when the distractor participates in mastication, were included in the current study. To conduct the FEA, load boundary conditions (35.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!