A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores. | LitMetric

Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores.

J Contam Hydrol

Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States. Electronic address:

Published: October 2014

AI Article Synopsis

  • The study investigates how estrogen compounds behave in Hawaiian soils and their potential environmental impacts, especially on freshwater organisms and human health.
  • Different soil types (Oxisol, Mollisol, and cinder) were tested, showing that mineral composition and organic carbon content significantly influence the transport of these compounds.
  • Key findings indicate that the presence of macropores in structured soil accelerates estrogen mobility, particularly in cinder soil, and using recycled water in agriculture may increase risks to groundwater quality, warranting careful review.

Article Abstract

The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2014.07.006DOI Listing

Publication Analysis

Top Keywords

estrogen compounds
12
recycled water
12
fate transport
8
presence macropores
8
water
7
soils
6
soil
5
transport selected
4
selected estrogen
4
compounds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!