Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes.

Rheumatology (Oxford)

Department of Pathology, Microbiology and Immunology, Department of Medicine, Center for Science Outreach, Vanderbilt University, Nashville, TN and Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA. Department of Pathology, Microbiology and Immunology, Department of Medicine, Center for Science Outreach, Vanderbilt University, Nashville, TN and Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.

Published: January 2015

Objectives: Nuclear factor κB (NF-κB) is a critical activator of inflammatory processes and MTX is one of the most commonly prescribed DMARDs for treatment of RA. We sought to determine whether MTX inhibited NF-κB activity in RA and in lymphocytes and fibroblast-like synoviocytes (FLSs) and to define underlying mechanisms of action.

Methods: An NF-κB luciferase reporter plasmid was used to measure NF-κB activation across experimental stimuli. Flow cytometry was used to quantify changes in intracellular protein levels, measure levels of reactive oxygen species and determine apoptosis. Quantitative RT-PCR was used to identify changes in MTX target genes.

Results: In T cell lines, MTX (0.1 μM) inhibited activation of NF-κB via depletion of tetrahydrobiopterin (BH4) and increased Jun-N-terminal kinase (JNK)-dependent p53 activity. Inhibitors of BH4 activity or synthesis also inhibited NF-κB activation and, similar to MTX, increased JNK, p53, p21 and JUN activity. Patients with RA expressed increased levels of phosphorylated or active RelA (p65) compared with controls. Levels of phosphorylated RelA were reduced in patients receiving low-dose MTX therapy. In contrast, inhibition of NF-κB activation by MTX was not mediated via BH4 depletion and JNK activation in FLSs, but rather was completely prevented by adenosine receptor antagonists.

Conclusion: Our findings support a model whereby distinct pathways are activated by MTX in T cells and FLSs to inhibit NF-κB activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269792PMC
http://dx.doi.org/10.1093/rheumatology/keu279DOI Listing

Publication Analysis

Top Keywords

nf-κb activation
16
nuclear factor
8
factor κb
8
distinct pathways
8
fibroblast-like synoviocytes
8
nf-κb
8
mtx
8
inhibited nf-κb
8
activation mtx
8
levels phosphorylated
8

Similar Publications

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Background And Purpose: Patients with active cancer face an increased risk of ischemic stroke. Also, stroke may be an initial indicator of cancer. In patients with large vessel occlusion (LVO) stroke treated with thrombectomy, analysis of the clot composition may contribute new insights into the pathological connections between these two conditions.

View Article and Find Full Text PDF

The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions.

View Article and Find Full Text PDF

An Antibacterial Hemostasis Sponge of Gelatin/ε-Poly-L-Lysine Composite.

J Biomed Mater Res B Appl Biomater

January 2025

Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P. R. China.

Massive bleeding and bacterial infection of wounds may be life-threatening or even lead to death. Nowadays, gelatin-based hemostatic sponges have been widely used, but gelatin is not antibacterial and has poor structural stability. In this study, we mixed an antibacterial polypeptide, ε-poly-L-lysine (EPL), into gelatin.

View Article and Find Full Text PDF

Programmed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!