AI Article Synopsis

  • This study developed a high-density genetic map for soybean using specific length amplified fragment sequencing (SLAF-seq) to identify a large number of single nucleotide polymorphisms (SNPs).
  • A total of 164,197 high-quality SLAFs were identified, with 5,308 polymorphic markers used to construct a genetic map of 2,655.68 cM across 20 linkage groups, which features the closest spacing between markers in soybean to date.
  • The findings aim to enhance gene mapping and molecular breeding efforts for soybean, providing a crucial resource for future research and developments in this important crop.

Article Abstract

Soybean is an important oil seed crop, but very few high-density genetic maps have been published for this species. Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. SLAF-seq was employed in this study to obtain sufficient markers to construct a high-density genetic map for soybean. In total, 33.10 Gb of data containing 171,001,333 paired-end reads were obtained after preprocessing. The average sequencing depth was 42.29 in the Dongnong594, 56.63 in the Charleston, and 3.92 in each progeny. In total, 164,197 high-quality SLAFs were detected, of which 12,577 SLAFs were polymorphic, and 5,308 of the polymorphic markers met the requirements for use in constructing a genetic map. The final map included 5,308 markers on 20 linkage groups and was 2,655.68 cM in length, with an average distance of 0.5 cM between adjacent markers. To our knowledge, this map has the shortest average distance of adjacent markers for soybean. We report here a high-density genetic map for soybean. The map was constructed using a recombinant inbred line population and the SLAF-seq approach, which allowed the efficient development of a large number of polymorphic markers in a short time. Results of this study will not only provide a platform for gene/quantitative trait loci fine mapping, but will also serve as a reference for molecular breeding of soybean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130620PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104871PLOS

Publication Analysis

Top Keywords

high-density genetic
16
genetic map
16
map soybean
12
specific length
8
length amplified
8
amplified fragment
8
fragment sequencing
8
polymorphic markers
8
average distance
8
distance adjacent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!