Aim: To compare selected physicochemical and biological properties of an experimental sealer with those of two commercially available sealers.
Methodology: AH Plus and EasySeal were used as model materials for commercially available amine-epoxide sealers. They were mixed as stated by the manufacturer. The two components of experimental sealer EvoSeal A were mixed 1 : 1 vol%. The setting time was determined in two different ways: first, by setting of sealers in a temperature- and moisture-controlled environment followed by testing with a Gilmore needle and secondly, by oscillating measurements of setting behaviour using a rheometer. Differential scanning calorimetry (DSC) of the sealer was performed for comparison of thermal properties. Flow and film thickness were determined by applying pressures of 100 g and 15.3 kg, respectively, on the materials between two glass plates and measuring the diameters of the compressed sealer and the thickness with a micrometer gauge. Solubility of set materials was conducted by layering the samples with water, storing in a temperature- and humidity-controlled environment and evaporating the solvent. The solved sealer parts were then weighed. The radiopacity was measured in an X-ray experiment comparing radiopacity of a cured sealer to an aluminium step wedge. Volume shrinkage was defined by measuring the densities of samples before and after setting. The film thickness, fluidity, curing time, radiopacity and solubility of the test materials were performed as specified in DIN EN ISO 6876:2010 draft. The volume shrinkage was determined in a method adapted from standard DIN 13907:2007-01. Antibacterial activity was tested against Gram-positive Streptococcus oralis cultures in a contact test based on standard ISO 22196:2011 (E). Statistical analysis was performed using Mann-Whitney U-test where applicable. Significant differences were determined with P < 0.05.
Results: The experimental sealer, EvoSeal A, reached standard specifications. In terms of film thickness, the highest value was measured for EvoSeal A with a film thickness of 27 μm, comparing to 6 μm for EasySeal (P ≤ 0.001) and 8 μm for AH Plus (P ≤ 0.001). Comparing the flow, all values corresponded to EasySeal with a diameter of 17.3 mm. The only significant difference was determined for AH Plus compared to EvoSeal A (P = 0.0353). Volume shrinkage of EvoSeal A was 48% smaller compared to EasySeal and approximately 20% lower compared to AH Plus. The shortest curing time was determined for EvoSeal A (3.0 h) followed by EasySeal (4.1 h) and AH Plus (24 h). For all groups, significant differences were observed (P ≤ 0.001). EvoSeal A had a significantly higher radiopacity than EasySeal (P ≤ 0.001) but significantly lower values than AH Plus (P ≤ 0.001). The solubility of AH Plus and EvoSeal A was <0.5% (P = 0.2435). Compared to EasySeal with a solubility of 2.7%, significant differences were observed (P ≤ 0.02). Three weeks after setting, EasySeal and EvoSeal A still had an antibacterial effect against S. oralis in contrast to AH Plus. In this respect, comparing AH Plus with EvoSeal A and EasySeal, respectively, significant differences were observed (P ≤ 0.001). No significant differences between EasySeal with EvoSeal A (P = 0.540) were determined.
Conclusions: The physical and chemical properties of the experimental sealer EvoSeal A were comparable to the two commercially established sealers EasySeal and AH Plus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/iej.12372 | DOI Listing |
BMC Oral Health
January 2025
Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.
Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.
J Esthet Restor Dent
January 2025
Magne Education, Beverly Hills, California, USA.
Objective: Chemicals used during canal disinfection and endodontic sealers have a deleterious effect on dentin bond strength. The aim of this study was to evaluate a novel clinical sequence to improve the resin-dentin microtensile bond strength (μTBS) to endodontically treated teeth.
Materials And Methods: Twenty human molars were distributed in four experimental groups (n = 5, N = 20): C-control group without exposure to any endodontic chemical substances (2.
Aust Endod J
December 2024
Department of Oral, College of Stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, People's Republic of China.
This study evaluated the cytotoxicity and biocompatibility of a new strontium silicate-based root canal sealer (C-Root SP), in comparison with those of iRoot SP and AH plus. The sealer extract was diluted to the concentrations of 100%, 75%, 50%, and 25%. L929 cells were cultured for 24 h, and the absorbance value was determined.
View Article and Find Full Text PDFJ Dent (Shiraz)
December 2024
Dept. of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Statement Of The Problem: The creation of a proper seal of the root canal with canal-filling materials, such as gutta-percha and sealer, is one of the essential factors in the success of root canal treatment. In addition, the penetration depth of the sealer is one of the influential factors in creating a proper seal, which improves the sealing ability of the canal and the burial of microorganisms.
Purpose: This study aimed to investigate the effect of cold atmospheric plasma on the depth of tubular penetration of two types of resin sealer: AH26 and Beta RCS sealers.
BDJ Open
December 2024
Professor of Endodontics, Faculty of Dentistry, Egyptian Russian University, Badr City, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!