Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527314 | PMC |
http://dx.doi.org/10.3109/10253890.2014.954104 | DOI Listing |
Biochem Biophys Res Commun
October 2024
The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China. Electronic address:
Glucocorticoid-induced osteoporosis serves as a primary cause for secondary osteoporosis and fragility fractures, representing the most prevalent adverse reaction associated with prolonged glucocorticoid use. In this study, to elucidate the impact and underlying mechanisms of fluid shear stress (FSS)-mediated Piezo1 on dexamethasone (Dex)-induced apoptosis, we respectively applied Dex treatment for 6 h, FSS at 9 dyne/cm for 30 min, Yoda1 treatment for 2 h, and Piezo1 siRNA transfection to intervene in MLO-Y4 osteocytes. Western blot analysis was used to assess the expression of Cleaved Caspase-3, Bax, Bcl-2, and proteins associated with the PI3K/Akt pathway.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2020
Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA; Institute of Anatomy, Medical Faculty, University of Magdeburg, Germany; Clinical Neuroanatomy Section, Neurology Department, School of Medicine, Ulm University, Germany. Electronic address:
Patients with anxiety disorders and posttraumatic stress disorder (PTSD) exhibit exaggerated fear responses and noradrenergic dysregulation. Fear-related responses to α-adrenergic challenge were therefore studied in DxH C3H/HeJ-like recombinant inbred (C3HLRI) mice, which are a DBA/2J-congenic strain selectively bred for a high fear-sensitized startle (H-FSS). C3HLRI mice showed an enhanced acoustic startle response and immobility in the forced swim test compared to DBA/2J controls.
View Article and Find Full Text PDFCell Biol Int
September 2018
Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
The effects of load-induced interstitial fluid shear stress (FSS) on instantaneous signaling response of osteocytes (e.g., calcium signaling) have been well documented.
View Article and Find Full Text PDFStress
December 2014
Alimentary Pharmabiotic Centre, University College Cork, Cork , Ireland .
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!