Since 2005, lectin microarray technology has emerged as a simple and powerful technique for comprehensive glycan analysis. By using evanescent-field fluorescence detection technique, it has been applied for analysis of not only glycoproteins and glycolipids secreted by eukaryotic cells but also glycoconjugates on the cell surface of live eukaryotic cells. Bacterial cells are known to be decorated with polysaccharides, teichoic acids, and proteins in the peptide glycans of their cell wall and lipoteichoic acids in their phospholipid bilayer. Specific glycan structures are characteristic of many highly pathogenic bacteria, while polysaccharides moiety of lactic acid bacteria are known to play a role as probiotics to modulate the host immune response. However, the method of analysis and knowledge of glycosylation structure of bacteria are limited. Here, we describe the development of a simple and sensitive method based on lectin microarray technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. The entire procedure takes 3 h from putting labeled bacteria on the microarray to profiling its lectin binding affinity. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei/paracasei. The lectin binding profile of most strains was found to be unique. Our technique provides a novel strategy for rapid profiling of bacteria and enables us to differentiate numerous bacterial strains with relevance to the biological functions of surface glycosylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1292-6_25 | DOI Listing |
Oncotarget
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.
View Article and Find Full Text PDFJ Vector Borne Dis
January 2025
Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka.
Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.
View Article and Find Full Text PDFBBA Adv
December 2024
Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
Chemical-nose/tongue technologies are emerging as promising analytical tools for glycan analysis. After briefly introducing the importance of glycans and their analytical methods, including the lectin microarray (LMA) as one of the gold standards, the fundamental principles underlying chemical noses/tongues are explained and various applications for monosaccharides and glycans are introduced. Then, the similarities and differences of these two approaches are discussed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA.
Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Human lectins are critical carbohydrate-binding proteins that recognize diverse glycoconjugates from microorganisms and can play a key role in host-microbe interactions. Despite their importance in immune recognition and pathogen binding, the specific glycan ligands and functions of many human lectins remain poorly understood. Using previous proof-of-concept studies on selected lectins as the foundation for this work, we present ten additional glycan analysis probes (GAPs) from a diverse set of human soluble lectins, offering robust tools to investigate glycan-mediated interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!