The analysis of NMR relaxation data is revisited along the lines of a Bayesian approach. Using a Markov Chain Monte Carlo strategy of data fitting, we investigate conditions under which relaxation data can be effectively interpreted in terms of internal dynamics. The limitations to the extraction of kinetic parameters that characterize internal dynamics are analyzed, and we show that extracting characteristic time scales shorter than a few tens of ps is very unlikely. However, using MCMC methods, reliable estimates of the marginal probability distributions and estimators (average, standard deviations, etc.) can still be obtained for subsets of the model parameters. Thus, unlike more conventional strategies of data analysis, the method avoids a model selection process. In addition, it indicates what information may be extracted from the data, but also what cannot.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2014.07.007DOI Listing

Publication Analysis

Top Keywords

relaxation data
12
nmr relaxation
8
markov chain
8
chain monte
8
monte carlo
8
internal dynamics
8
data
6
reliability nmr
4
data analyses
4
analyses markov
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!