Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Polycythemia Vera Study Group (PVSG) and WHO classifications distinguished the Philadelphia (Ph(1)) chromosome-positive chronic myeloid leukemia from the Ph(1)-negative myeloproliferative neoplasms (MPN) essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (MF) or primary megakaryocytic granulocytic myeloproliferation (PMGM). Half of PVSG/WHO-defined ET patients show low serum erythropoietin levels and carry the JAK2(V617F) mutation, indicating prodromal PV. The positive predictive value of a JAK2(V617F) PCR test is 95% for the diagnosis of PV, and about 50% for ET and MF. The WHO-defined JAK2(V617F)-positive ET comprises three ET phenotypes at clinical and bone marrow level when the integrated WHO and European Clinical, Molecular and Pathological (ECMP) criteria are applied: normocellular ET (WHO-ET), hypercellular ET due to increased erythropoiesis (prodromal PV) and hypercellular ET associated with megakaryocytic granulocytic myeloproliferation (EMGM). Four main molecular types of clonal MPN can be distinguished: JAK2(V617F)-positive ET and PV; JAK2 wild-type ET carrying the MPL(515); mutations in the calreticulin (CALR) gene in JAK2/MPL wild-type ET and MF, and a small proportion of JAK2/MPL/CALR wild-type ET and MF patients. The JAK2(V617F) mutation load is low in heterozygous normocellular WHO-ET. The JAK2(V617F) mutation load in hetero-/homozygous PV and EMGM is clearly related to MPN disease burden in terms of splenomegaly, constitutional symptoms and fibrosis. The JAK2 wild-type ET carrying the MPL(515) mutation is featured by clustered small and giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow (WHO-ET), and lacks features of PV. JAK2/MPL wild-type, CALR mutated hypercellular ET associated with PMGM is featured by dense clustered large immature dysmorphic megakaryocytes and bulky (cloud-like) hyperchromatic nuclei, which are never seen in WHO-ECMP-defined JAK2(V617F) mutated ET, EMGM and PV, and neither in JAK2 wild-type ET carrying the MPL(515) mutation. Two thirds of JAK2/MPL wild-type ET and MF patients carry one of the CALR mutations as the cause of the third distinct MPN entity. WHO-ECMP criteria are recommended to diagnose, classify and stage the broad spectrum of MPN of various molecular etiologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000358580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!